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Abstract

We explore the viability of Degenerate Higher-Order Scalar-Tensor (DHOST) theories as alternatives to dark

energy. We study the solution on a static spherically symmetric spacetime in DHOST theories in which grav-

itational waves propagate at the speed of light and do not decay into scalar fluctuations. We also study the

statistical property of the density fluctuations at linear and non-linear orders.

In generic DHOST theories, the standard inverse square law of the gravitational potentials is partially broken

inside matter as Sun. The screening mechanism in DHOST theories evading gravitational wave constraints

operates very differently from that in generic DHOST theories. We derived a spherically symmetric solution in

the presence of non-relativistic matter. General relativity is recovered in the vacuum exterior region provided

that functions in the Lagrangian satisfy a certain condition, implying that fine-tuning is required. Gravity in the

matter interior exhibits novel features: although the gravitational potentials still obey the inverse square law, the

effective gravitational constant is different from its exterior value, and the two metric potentials do not coincide.

We discuss possible observational constraints on this subclass of DHOST theories, and argue that the tightest

bound comes from the Hulse-Taylor pulsar.

We investigate the potential of cosmological observations, such as galaxy surveys, for constraining DHOST

theories, focusing in particular on the linear growth of the matter density fluctuations. We develop a formalism

to describe the evolution of the matter density fluctuations during the matter dominated era and in the early

stage of the dark energy dominated era in DHOST theories, and give an approximate expression for the gravita-

tional growth index in terms of several parameters characterizing the theory and the background solution under

consideration. By employing the current observational constraints on the growth index, we obtain a new con-

straint on a parameter space of DHOST theories. Combining our result with other constraints obtained from the

Newtonian stellar structure, we show that the degeneracy between the effective parameters of DHOST theories

can be broken without using the Hulse-Taylor pulsar constraint.

The Horndeski scalar-tensor theory and its recent extensions allow nonlinear derivative interactions of the

scalar degree of freedom. We study the matter bispectrum of large scale structure as a probe of these modified

gravity theories, focusing in particular on the effect of the terms that newly appear in the so-called “beyond

Horndeski” theories. We derive the second-order solution for the matter density perturbations and find that the

interactions beyond Horndeski lead to a new time-dependent coefficient in the second-order kernel which differs

in general from the standard value of general relativity and the Horndeski theory. This coefficient can deform the

matter bispectrum at the folded triangle configurations, while it is never possible within the Horndeski theory.
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Chapter 1

Introduction

The elucidation of the evolution of the universe, so-called cosmology, is one of the most interesting topics in

humanity. With the development of technology of observations, we can test cosmology precisely. We are in the

golden ages of cosmology. The standard cosmology is based on two well-established theories in modern physics.

The first is General Relativity (GR) suggested by A. Einstein. The other is the standard model of particle

physics. Using these foundations, we can predict phenomena in the universe. Precise observations have proved

most predictions. However, there are some mysteries in modern cosmology.

Fig. 1.1 is the rate of energy components in the present universe [1]. The standard matter is about 5%, and

the remnants 95% are dark components in the universe, and we do not know these origins. Dark energy is the

component that plays a role of the present late-time acceleration [2, 3]. Based on GR and standard model, the

most straightforward origin of the acceleration is the cosmological constant. However, there is the cosmological

constant problem [4]. That is the significant discordance between the observed value and the prediction based

on quantum field theory of the cosmological constant. An interesting alternative to the cosmological constant

is modified gravity (see Ref. [5, 6, 7, 8] for reviews). On cosmological scales, modified gravity explains the

late-time acceleration while it needs to recover the result of tests of gravity on the Solar system. Its modification

produces an accelerating expansion without parameter fine-tunings and is screened on the Solar system scales.

Modified gravity is the modification of GR. The way of the modification typically is to add some new degree

of freedom (DoF) in addition to metric tensor. The simple example is scalar-tensor theories to add a new scalar

Fig. 1.1 The components of the present universe [1].
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field to GR. For example, f(R) gravity [10] (see Refs. [11, 12, 13, 14] for detailed discussion) has some higher-

order corrections to Einstein-Hilbert (EH) action. By the redefinition of variables, f(R) gravity is equivalent

to the EH action and canonical scalar field conformally coupled to matter. DGP braneworld [15] has the EH

action and massless scalar field with non-linear kinetic self-interactions. Comprehensively treating these variable

models, scalar-tensor theories have been generalized in the direction based on removing ghost modes due to higher

derivatives, Ostrogradsky ghost [16, 17]. It is called the Horndeski theory [18, 19, 20] which has the most general

theory with second-order equations of motion for metric tensor and scalar field. As for further developments,

Degenerate Higher-Order Scalar-Tensor (DHOST) theories have been built [21, 22, 23, 24, 25, 26, 27]. Despite

higher-order Euler-Lagrangian equations, the system can reduce second-order equations thanks to its degeneracy.

Thus, there is no problematic ghost mode. However, due to the presence of its degeneracy, DHOST theories have

higher derivative operators. In this thesis, we would like to study the properties of DHOST theories on small

and large scales toward its tests.

This thesis is organized as follows:

Chapter 2 We overview the late-time acceleration based on GR. We introduce modified gravity as an

interesting one of the possibilities to explain the late-time acceleration which is consistent with our universe.

Chapter 3 we overview DHOST theories and introduce its viable classes evading gravitational wave con-

straints.

Chapter 4 We study the screening mechanism in a subclass of DHSOT theories in which gravitational waves

propagate at the speed of light and do not decay into scalar fluctuations. We derive a spherically symmetric

solution in the presence of a non-relativistic matter. GR is recovered in the vacuum exterior region provided

that functions in the Lagrangian satisfy a certain condition, implying that fine-tuning is required. Gravity in

the matter interior exhibits novel features: although the gravitational potentials still obey the standard inverse

power law, the effective gravitational constant is different from its exterior value, and the two metric potentials

do not coincide. We discuss possible observational constraints on this subclass of DHOST theories and argue

that the tightest bound comes from the Hulse-Taylor pulsar. This chapter is based on S. Hirano, T. Kobayashi,

and D. Yamauchi, “Screening mechanism in degenerate higher-order scalar-tensor theories evading gravitational

wave constraints,” Phys. Rev. D 99 (2019) no.10, 104073 [arXiv:1903.08399 [gr-qc]] [28].

Chapter 5 We investigate the potential of cosmological observations, such as galaxy surveys, for constraining

DHOST theories, focusing in particular on the linear growth of the matter density fluctuations. We develop a

formalism to describe the evolution of the matter density fluctuations during the matter-dominated era and in

the early stage of the dark energy dominated era in DHOST theories, and give an approximate expression for the

gravitational growth index in terms of several parameters characterizing the theory and the background solution

under consideration. By employing the current observational constraints on the growth index, we obtain a new

constraint on a parameter space of DHOST theories. Combining our result with other constraints obtained from

the Newtonian stellar structure, we show that the degeneracy between the effective parameters of DHOST theories

can be broken without using the Hulse-Taylor pulsar constraint. This chapter is based on S. Hirano, T. Kobayashi,

D. Yamauchi, and S. Yokoyama, “Constraining degenerate higher-order scalar-tensor theories with linear growth

of matter density fluctuations,” Phys. Rev. D 99 (2019) no.10, 104051 [arXiv:1902.02946 [astro-ph.CO]] [29].

Chapter 6 The Horndeski scalar-tensor theory and its recent extensions allow nonlinear derivative interactions
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of the scalar degree of freedom. We study the matter bispectrum of large scale structure as a probe of these

modified gravity theories, focusing in particular on the effect of the terms that newly appear in the so-called

“beyond Horndeski” theories. We derive the second-order solution for the matter density perturbations and find

that the interactions beyond Horndeski lead to a new time-dependent coefficient in the second-order kernel which

differs in general from the standard value of GR and the Horndeski theory. This coefficient can deform the

matter bispectrum at the folded triangle configurations, while it is never possible within the Horndeski theory.

This chapter is based on S. Hirano, T. Kobayashi, H. Tashiro, and S. Yokoyama, “Matter bispectrum beyond

Horndeski theories,” Phys. Rev. D 97 (2018) no.10, 103517 [arXiv:1801.07885 [astro-ph.CO]] [30].

Chapter 7 We summarize the conclusions in this thesis.

Through this thesis, we use the natural units, ℏ = c = 1.
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Chapter 2

Modified gravity

In this section, we discuss the introduction of modified gravity. In Sec. 2.1, we show that the late-time acceleration

is explained by the cosmological constant in standard cosmology. In Sec. 2.2, we introduce modified gravity and

explain its property, screening mechanism, and self-accelerating solution.

2.1 Standard cosmology

In 1915, Einstein suggested General Relativity (GR) based on general coordinate invariance (general relativistic

principle) and equivalence principle which gravity universally couples to matter. In GR, the dynamics of spacetime

(i.e., metric tensor gµν) is determined by Einstein equations,

Gµν = 8πGTµν . (2.1)

Gµν is the Einstein tensor which is expressed by the metric tensor and its derivatives, and Tµν is an energy-

momentum tensor of matter contents. In general, these equations are non-linear, so it is difficult to solve.

Assuming the symmetry to a spacetime and matter distribution, we can solve. For example, static spherically

symmetric case or homogeneous and isotropic case are those.

Our universe would be spatially homogeneous and isotropic at a cosmological scale (which is larger than about

Mpc scales) from current cosmological observations. Assuming the homogeneity and isotropy to spacetime, the

metric tensor is determined by the Einstein equations

ds2 = － dt2 + a2(t)γijdx
idxj , (2.2)

γij = diag

(
1

1−Kr2
, r2, r2 sin θ

)
. (2.3)

This is called Friedmann-Lemaitre-Robertson-Walker (RW) metric. K is the spatial constant curvature. In the

following discussion, we set K = 0 because the effect of the spatial curvature is negligible to other effects in our

universe [1]. We also use the Cartesian coordinates as spatial coordinates. The resultant metric is given by

ds2 = −dt2 + a2(t)δijdx
idxj . (2.4)

On the matter sector, we consider the universe filled with the perfect fluid with the energy-momentum described

by

Tµν = (ρ+ p)uµuν + pgµν , (2.5)

where ρ and p are the energy density and pressure of the fluid, and uµ = (−1, 0, 0, 0) is the 4-velocity co-moving

with this coordinate.
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Let us calculate the geometrical quantities in this spacetime. The components of the Christoffel symbol are

Γ0
00 = Γ0

0i = Γ0
i0 = Γ0i

00 = 0,

Γ0
ij = a2Hγij ,

Γi
0j = Γi

j0 = Hδij ,

Γi
jk = (3)Γi

jk =
1

2
γil(γjl,k + γkl,j − γjk,l). (2.6)

The components of the Riemann tensor and the Ricci scalar are

R00 = −3(Ḣ +H2),

R0i = Ri0 = 0,

Rij =
(
Ḣ + 3H2

)
γij ,

R = 6
(
Ḣ + 2H2

)
. (2.7)

Then, the components of the Einstein tensor are

G00 = 3H2,

G0i = Gi0 = 0,

Gij = −
(
2Ḣ + 3H2

)
γij . (2.8)

Thus, the (0, 0) and (i, j) components of the Einstein equations are given by

3M2
PlH

2 = ρ, (2.9)

－M2
Pl

(
3H2 + 2Ḣ

)
= p. (2.10)

A dot denotes time derivative of the coordinate time, and H is the Hubble parameter, H := ȧ/a. MPl is the

reduced Planck mass, M2
Pl := 1/(8πG). The first equation is the so-called Friedmann equation. The second

equation is the so-called evolution equation for the scale factor a. Also, the Bianchi identity of the Einstein

tensor and the Einstein equation induce the energy-momentum conservation ∇µTµν = 0. The ν = 0 component

of this conservation gives the continuity equation

ρ̇+ 3H(ρ+ p) = 0. (2.11)

The evolution of the universe is determined by Eqs. (2.9)–(2.11), and the equation of state (EoS).

We also have the metricity, ∇ρ gµν = 0. So, we can add the cosmological constant term as matter content to

the Einstein equations

Gµν = 8πGTµν − Λgµν . (2.12)

This Λ is the cosmological constant. This term is known as the simplest origin of the late-time acceleration of

the universe.

Let us consider the matter contents. As matter contents, we can consider non-relativistic matter, radiation, and

cosmological constant. We wrote these components by the indices m, r, λ, respectively. In the case of radiation,

the EoS parameter w (:= p/ρ) is 1/3. Then, from Eq. (2.11), ρr ∝ a−4. In the case of matter, the EoS parameter

is 0. Then, from Eq. (2.11), ρm ∝ a−3. In the case of cosmological constant, ρΛ =M2
PlΛ, pΛ = −M2

PlΛ, and thus

w = −1.

Next, let us derive the evolution of the universe in each era. The Friedmann equation (2.9) determines the

expansion law of the universe.
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3M2
PlH

2 =
ρm0

a3
+
ρr0
a4

+ ρΛ

⇔ ȧ2 = H2
0

(
Ωm0

a
+

Ωr0

a2
+ a2ΩΛ

)
. (2.13)

H0 is the present-day Hubble parameter. ρi0(i = r,m,Λ) is the energy density of each matter content at the

present time. Ωi0(:= ρi0/(3M
2
PlH

2
0 ))(i = r,m,Λ) are the energy fractions to the total energy density at the

present time. From the Planck observation [1] on CMB (Cosmic Microwave Background radiation), we can

determine Ωr0 ≈ 10−5, Ωm0 ≈ 0.3, and ΩΛ0 ≈ 0.7. Note that non-relativistic matter contains dark matter and

baryons, and the most component of it is dark matter. Thus, dark matter plays an essential role in structure

formation.

Usually, the scale factor is normalized to unity at present. In the early stage of the universe (a ≪ 1),

the relativistic matter is dominated. After that, the non-relativistic matter becomes dominant. Finally, the

cosmological constant becomes dominant, and this situation would be that of our universe at present.

Let us study the expansion law of each stage of the universe. Radiation Dominance (RD): If the universe

becomes dominated by radiation,

ȧ2 ≈ H2
0Ωr0

a2
. (2.14)

Then, the solution is given by

a(t) = (2H0

√
Ωr0t)

1/2. (2.15)

So, the RD universe is expanding, but the rate of the expansion ȧ is ∼ 1/t. The expansion in the RD era is the

decelerate expansion. Matter Dominance (MD): If the universe becomes dominated by non-relativistic matter,

ȧ2 ≈ H2
0Ωm0

a
. (2.16)

Then, the solution is given by

a(t) =

(
3

2
H0

√
Ωm0t

)2/3

, (2.17)

⇔ H =
2

3t
. (2.18)

So, the MD universe is expanding, but the rate of the expansion ȧ is ∼ 1/t. The expansion in the MD era is

the decelerate expansion. Cosmological Constant Dominance: If the universe become dominated by cosmological

constant,

ȧ2 ≈ H2
0ΩΛ. (2.19)

Then, the solution is given by

a(t) = a0e
H0

√
ΩΛt. (2.20)

The cosmological constant dominance is expanding, and the acceleration of the expansion ä is ∼ eH0

√
ΩΛt. This

expansion in the cosmological constant dominance is the accelerated expansion. This solution is known as the de

Sitter solution. Therefore, the cosmological constant term is the most straightforward candidate for the origin of

the late-time acceleration within GR and the standard model.
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From the joint analysis of CMB and Ia Supernova observations [1], EoS parameter for dark energy at the

“present” time is constrained to be

wde = −1.03± 0.03. (2.21)

This is very close to that of the cosmological constant. Does the cosmological constant drive the late-time

acceleration? However, there is the cosmological constant problem [4]. That is the significant discordance

between the observed value and the prediction based on quantum field theory of the cosmological constant. An

interesting alternative to the cosmological constant is modified gravity (see Ref. [5, 6, 7, 8] for reviews).

2.2 Modified gravity

In this subsection, we introduce modified gravity models which can explain the late-time acceleration. First, we

explain why we can modify Einstein’s general relativity. Then, we introduce the prototypes of modified gravity

models. Using prototypes, we explain why these are consistent with the tests of gravity on small scales and

quantum effects. Finally, we show the concrete cosmological dynamics of modified gravity models by using shift

symmetric Horndeski theories.

2.2.1 Why we can modify the gravity theory on cosmological scales

　 On scales of the Earth, Newtonian gravity is known as the appropriate description of gravity. On scales of the

Solar system, we need general relativistic corrections to Newtonian gravity. Recognizing Newtonian gravity to

be the limit of GR with slow-motion approximation, GR is our gravity law on these scales. From observations

of GWs, the gravity on strong gravitational field regime also could be GR. However, the tests of gravity are not

performed on all scales. Figure. 2.1 and 2.2 summarize where we have tested gravity. Gravity is schematically

parametrized by the amplitudes of gravitational potential GM/r and curvature GM/r3 where M is the mass of

a point source, and r is the distance from the source. General relativity is well tested in the Solar system and by

using binary pulsars. These are large curvature regions in these figures. Gravitational wave detectors will test

gravity on strong gravity regimes. Gravity on low curvature regions only partially was tested. This region is on

cosmological scales. The gravity theory can be modified on cosmological scales, and also we need to challenge

tests of gravity on cosmological scales.

2.2.2 Lovelock theorem and its break

In this section, we introduce the direction for modifications of gravity. To do so, let us consider the Lovelock

theorem [44]. In 4 dimensional spacetime, we assume that the gravity theory is constructed by the metric tensor

and its derivatives up to second order with general coordinate invariance, L = L(gµν , ∂ρgµν , ∂ρ∂σgµν). Permitting

the equations of motion based on this action to be second order, the equations of motion are uniquely determined

to be the Einstein equations with the cosmological constant,

Eµν = α

(
Rµν − 1

2
gµνR

)
+ Λgµν , (2.22)

where α is coupling constant. This statement is Lovelock theorem.

Treating the violation of the Lovelock theorem as a no-go theorem to go beyond the Einstein equations, ways

how to violate that is the direction to modify GR. Possibilities to violate the Lovelock theorem are as follows

• To add a scalar field,

• Higher-order curvatures,
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Fig. 2.1 The parameter space for gravitational

fields in experiments. See Ref. [45] for details.

Fig. 2.2 The parameter space for gravitational

fields in predictions of GR. See Ref. [45] for details

• Extra dimensions.

These are effectively to add extra degrees of freedom to GR. The scalar-tensor theories are its simplest models

in the case which have a scalar field in addition to the metric tensor.

2.2.3 Prototypes of modified gravity: Scalar-Tensor theories

In this section, we introduce the modified gravity models. For simplicity, we treat typical models in scalar-tensor

theories.

The simplest model is the Brans-Dicke theory [9]. The action is given by

S =

∫
d4x

√
−g

[
ψR+

wBD

ψ
(∂ψ)2

]
, (2.23)

where ψ is the scalar field, and wBD is a constant. The first term is the non-minimal coupling between the scalar

and tensor fields, and ψ means a substitute for the gravitational constant when we compare to the Einstein-Hilbert

action. This theory was considered as a model that can change the gravitational constant by the dynamics of the

scalar field.

Second, let us consider f(R) gravity [10] (see [11, 12, 13, 14] for reviews). f(R) gravity is the generalization of

the Einstein-Hilbert action. The action is given by

S =
M2

Pl

2

∫
d4x

√
−g [R+ f(R)] +

∫
d4x

√
−gLm(gµν ,Ψm), (2.24)



Chapter 2 Modified gravity 9

where f is the arbitrary function in Ricci tensors, and Lm is the matter Lagrangian and Ψm is its field. Naively

speaking, there exist two additional DoFs in this action because its equation of motion is fourth order due to

Rn ⊃ (∂2g)n. This is not correct. To see it, let us consider changes in the variables. First, we introduce the

Lagrangian multiplier λ to replace the Ricci scalar to the scalar field,

Sg =
M2

Pl

2

∫
d4x

√
−g [χ+ f(χ) + λ(R− χ)] . (2.25)

The variation for χ induces λ = 1+ fχ. Substituting this equation into the action and varying with respect to χ

again, we obtain

fχχ(R− χ) = 0. (2.26)

This requires that fχχ ̸= 0 for recovering the original action (2.24). If we define φ = 1+ fχ(χ), the action can be

rewritten by

S =

∫
d4x

√
−g

[
M2

Pl

2
φR− U(φ)

]
, (2.27)

U(φ) =
M2

Pl

2
[χ(φ)φ− f(χ(φ))] . (2.28)

Performing the conformal transformation

gµν → gEµν = φgµν (2.29)

and the field redefinition

ϕ

MPl
=

√
3

2
lnφ, (2.30)

we further rewrite the action as

S =

∫
d4x

√
−gE

[
M2

Pl

2
RE − 1

2
gµνE ∂µϕ∂νϕ− U(ϕ)

]
+

∫
d4x

√
−gLm(gµν ,Ψm), (2.31)

U(ϕ) =
1

φ2
[χ(φ)φ− f(χ(φ))], (2.32)

gµν = exp

[
−
√

2

3

ϕ

MPl

]
gEµν . (2.33)

So, f(R) gravity is equivalent to the system with GR and the canonical scalar field with conformal couplings to

matter. Note that the frame with standard kinetic terms for metric, EH action, is called Einstein frame while

the frame with the minimal coupling to matter is called Jordon frame. Eq. (2.24) is the action in Jordon frame

while Eq. (2.33) is that in Einstein frame. Using the slow-rolling phase in the potential such as inflation, the

accelerating expansion can be realized. However, with not only the scalar field as an extra energy component

in the universe but also its non-minimal couplings to matter, the scalar field would propagate as an extra force.

There exists a suppression mechanism of the couplings to matter, and then the scalar field cannot propagate (we

will see this topic in Sec. 2.2.4). For example, there exists a viable model in f(R) gravity, so-called Hu-Sawicki

model [46],

f(R) = −H2
0

c1(R/H
2
0 )

n

1 + c2(R/H2
0 )

n
. (2.34)

As you see, the f(R) term is sub-dominant on a higher curvature regime, R≫ H2
0 (i.e., early universe), and then

it drives the accelerating expansion on a late-time universe.
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Another example is the DGP braneworld [15]. The idea of braneworld is inspired by the D-brane based on

string theory. In this model, our world (brane) is embedded in 5-dimensional spacetime (bulk). The standard

particles are confined to the brane while gravity can propagate through the whole spacetime. The action is given

by

S =
M3

5

2

∫
d5x

√
−(5)g (5)R+

M2
4

2

∫
d4x

√
−g (R+ Lm), (2.35)

where (5)g and (5)R are the 5D metric tensor and Ricci scalar respectively. M4 and M5 are Planck mass in each

dimension respectively. The Friedmann equation in this model is given by

H2 =
H

rc
+

ρm
3M2

4

, (2.36)

where rc = M2
4 /2M

3
5 is the cross-over scale. The origin of the model parameter is explained by the geometry

of spacetime. At early stages, H ≫ 1/rc, we recover the usual Friedmann equation. At late times, we can

obtain the solution H = 1/rc, and then the de Sitter expansion can occur. This solution is called self-acceleration

brunch, the late-time acceleration can be realized if we choose rc = H−1
0 . However, this solution is unstable under

perturbations [47, 48], so we need to generalize this model to evade this instability. However, we can capture

the property of its generalization from this model. The effective action projected in 4D flat spacetime from the

original action (2.35) in the decoupling limit (Λ is fixed, M4 → 0, and M5 → ∞) is given by [49]

S =

∫
d4x

[
(metric perturbations)− 1

2
(∂π)2 − (∂π)2

6
√
6Λ3

∂2π +
1

2
√
6M2

4

πT

]
, (2.37)

where π is scalar field which is the perturbations of the position of the brane in the 5th-direction. There exist the

non-linear self-interactions of the scalar field. Due to this interaction, a suppression mechanism of the couplings

to matter can occur, and then the inverse power law can be kept (we will see this topic in Sec. 2.2.4).

We expect that Modified gravity can realize the late-time acceleration by using such as self-accelerating de

Sitter solution. De Sitter spacetime is a maximally symmetric solution and has conformal symmetry. In Ref. [50],

the scalar field interactions with respect to conformal invariance have been constructed at the short distance limit.

By definition, the constructed theory has a self-accelerating solution. The authors obtain the scalar interactions

by building geometric quantities with respect to conformal invariance and using the conformal transformation

gµν = e2πηµν . In 4D, these are given by

L2 = −1

2
(∂π)2, (2.38)

L3 = −1

2
(∂π)2∂2π, (2.39)

L4 = −1

2
(∂π)2[(∂2π)2 − (∂µ∂νπ)

2], (2.40)

L5 = −1

4
(∂π)2[(∂2π)3 − 3(∂µ∂νπ)

2∂2π + 2(∂µ∂νπ)
3]. (2.41)

The indices of L mean the numbers of π in the interactions. The second one is similar to that of the non-linear

interaction in the DGP model. These interactions have the following symmetry in field space

∂µπ → ∂µπ + bµ, (2.42)

up to total derivatives and constant terms. bµ is a constant vector. This symmetry is similar to Galilean shift

symmetry in Newtonian dynamics. So, this symmetry is called Galiean shift symmetry, and the scalar field with

Galilean symmetry in field space is called the galileon. The above interactions include higher derivatives. In

general, equations of motion are fourth order. The degrees of freedom are two against the presence of a single
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scalar field. This extra DoF is known as Ostrogradsky ghost [16, 17]. However, the galileon has no Ostrogradsky

ghost thanks to the special combination in interactions with respect to Galilean shift symmetry.

The covariantized theory of the galileon is not derived from the galileon in flat space. This is because Ostro-

gradsky ghost appears in terms of higher derivatives of metric tensor when we replace the partial derivatives to

covariant derivatives. The covariantization of the galileon has been accomplished by introducing its counterterms

to eliminate higher derivatives of the metric tensor. The covariant action which leads to second-order EoMs for

metric tensor and scalar field is given by [51]

L2 = −1

2
(∇ϕ)2, (2.43)

L3 = −1

2
(∇ϕ)2□ϕ, (2.44)

L4 =
1

8
(∇ϕ)4R− 1

2
(∇ϕ)2[(□ϕ)2 − (∇µ∇νϕ)

2], (2.45)

L5 = −3

8
(∇ϕ)4Gµν∇µ∇νϕ− 1

4
(∇ϕ)2[(□ϕ)3 − 3(∇µ∇νϕ)

2□ϕ+ 2(∇µ∇νϕ)
3]. (2.46)

The kinetic mixing couplings between metric and scalar field for L4 and L5 are the counter terms to remove

higher derivative terms of the metric tensor.

Based on the context of eliminating higher derivatives for the metric tensor and scalar field, this action can be

further generalized to the generalized Galileon[19]. As shown in Ref. [20], its action is equivalent to the Horndeski

theory [18] and the following action is given by

SH =

5∑
i=2

∫
d4x

√
−gLi (2.47)

L2 = G2(ϕ,X), (2.48)

L3 = −G3(ϕ,X)□ϕ, (2.49)

L4 = G4(ϕ,X)R+G4X [(□ϕ)2 − (∇µ∇νϕ)
2], (2.50)

L5 = G5(ϕ,X)Gµν∇µ∇νϕ− 1

6
G5X(ϕ,X)[(□ϕ)3 − 3(∇µ∇νϕ)

2□ϕ+ 2(∇µ∇νϕ)
3]. (2.51)

G2, G3, G4, and G5 are the arbitrary functions of ϕ and its kinetic term X := −(1/2)gµν∇µϕ∇νϕ. GiX denotes

X derivative of the arbitrary functions. Horndeski does not give this action. However, this action has recently

been called the Horndeski theory. This theory is the most general action which leads to second-order EoMs for

the metric and scalar field. There does not exist the Galilean symmetry explicitly, so the Horndeski theory does

not necessarily have a self-accelerating solution. We will see viable models with self acceleration in Sec. 2.2.6.

In the presence of non-minimal couplings to curvatures, the scalar field couples to matter in the Einstein frame.

Sourced by matter, the scalar field can propagate on small scales so that the inverse power law could be modified.

In the Horndeski theory, there exists a suppression mechanism of the couplings to matter, and then the inverse

power law can be kept (we will see this topic in Sec. 2.2.4).

On 17 Aug. 2017, the gravitational waves (GWs) from the neutron star (NS)-neutron star merger have been

detected. This event is called GW170817 [52]. At the end of a NS-NS merger, a gamma-ray burst would occur.

In this event, the Fermi satellite detected the gamma-ray burst, GRB 170817 [53]. Assuming the mechanism of

the gamma-ray burst, we can constrain the speed of GWs from the difference of arrival time between GWs and

gamma-ray. The bound roughly is given by

|c2GW − 1| ≲ 10−15. (2.52)

The upper bound is derived from the first arrival of GWs due to its superluminal propagation when GWs and

gamma-ray emitted simultaneously (Fig. 2.3). The lower bound is derived from the time lag of the beginning of
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Fig. 2.3 The image of the difference of the arrival

time between GWs and gamma-ray with superluminal

propagation, cGW > c. τobs is the difference of the

arrival time observed in the experiments, and Dmin is

the minimal distance from source object to the Earth.

Fig. 2.4 The image of the difference of the arrival

time between GWs and gamma-ray with subluminal

propagation, cGW < c. τint is the time lag of the be-

ginning of emitting gamma-ray against that of GWs.

The maximum value of τobs is roughy 10s in typical

models of gamma-ray burst.

emitting gamma-ray against that of GWs (Fig. 2.4). A lot of modified gravity models have been ruled out, only

modified gravity models which can survive this event have minimal or conformal couplings to matter.

In the Horndeski theory, the propagation speed of GWs on a FLRW spacetime is given by [20]

c2GW =
G4 −X(ϕ̈G5X +G5ϕ)

G4 − 2XG4X −X(Hϕ̇G5X −G5ϕ)
. (2.53)

Maybe, this should correspond to unity. If the fine-tuning for the dynamics of the scalar field exists for some

reason, the denominator and numerator in Eq. (2.53) can become the same. However, if GWs go through local

structures on the propagation, the speed of GWs can locally change due to the variation of the local value of the

scalar field [55]. This implies G4X = G5 = 0. The resultant Horndeski theory after GW180817 is given by

LH = G2(ϕ,X)−G3(ϕ,X)□ϕ+G4(ϕ)R. (2.54)

Assuming we have minimal couplings to matter in this Jordon frame, this theory can be transformed to the

Einstein frame where there are no kinetic couplings between the scalar field and metric tensor as the conformal

transformation,

gµν → gEµν = G4(ϕ)gµν . (2.55)

Then, the action in the Einstein frame is

S =

∫
d4x

√
−gE

[
G2(ϕ,X)−G3(ϕ,X)□Eϕ+

M2
Pl

2
RE

]
+

∫
d4x

√
−g Lm(gµν ,Ψm), (2.56)

where Lm is the Lagrangian for matter and Ψm is its field. This theory has the conformal couplings to matter.

Is the Horndeski theory the most general scalar-tensor theories to explain the late-time acceleration? This

answer is No! We will discuss the further developments of scalar-tensor theories next chapter, so-called Degenerate

Higher-Order Scalar-Tensor (DHOST) theories.



Chapter 2 Modified gravity 13

2.2.4 Recovering General relativity: Screening mechanism

In the Solar system, GR is tested with high precision. Let us consider a static spherically symmetric spacetime

around matter, ds2 = −(1 + 2Φ(r))dt2 + (1− 2Ψ(r))(dr2 + r2dΩ). For example, the ratio between gravitational

potentials Φ and Ψ is strongly constrained to unity,

Ψ/Φ− 1 ≤ O(10−5), (2.57)

from the observations of the deflection angle and time delation due to the gravitational field of the Sun [56, 57].

In GR, this difference is exactly zero, Φ = Ψ. This fact implies that gravity theory at a small scale like the

Solar system is GR. Modified gravity has additional degrees of freedom (DoFs) in addition to the DoFs of the

metric tensor. These additional DoFs generically propagate at all scale sourced by the trace part of the energy-

momentum tensor. Then, the relation Φ = Ψ would be violated.

We assume scalar-tensor theories for simplicity. In order to be satisfied with the relation between the gravi-

tational potentials, scalar-tensor theories should be required to suppress the propagation of additional DoFs on

small scales. This mechanism is called Screening mechanism. This mechanism is mainly induced by the effect

of nonlinear self-interactions of additional DoFs. There are two types.

The first is non-linear potential terms (this type screening is so-called Chameleon mechanism [58, 59]). In this

case, from couplings to energy-momentum tensor, the effective potential for the scalar field depends on the energy

density of matter. On a small scale, i.e., a high-dense region, the effective mass of the scalar increases drastically.

The solution of the scalar field is roughly described by the Yukawa potential, ∼ e−meffr/r, where r is the distance

from a source. Thus, the propagation of the scalar can be suppressed on a small scale, and the relation Φ = Ψ

is kept. However, the Chameleon mechanism works by the variation of the field value at local and cosmological

scales. In the transition from the RD era to the MD era, the conformal couplings to matter suddenly appear. In

Refs. [60, 61], the authors claim that this sudden appearance of matter field catastrophically kicks the value of

the field on cosmological scales to the very high energy scale near the Planck scale quantum-mechanically. The

classical background evolution would be spoiled. Due to this obstacle, modified gravity models with Chameleon

mechanism may not produce viable cosmology to explain the late-time acceleration.

The second is non-linear kinetic terms. This type of screening has kinetic screening [62] with first-order

derivatives and Vainshtein screening [63] with second-order derivatives. Because both screenings use the same

principle without different order of derivative, we focus on the Vainshtein screening and discuss it in detail. This

mechanism works typically in the Horndeski theory. Let us consider the cubic Gaileon [50] as a typical model

within Horndeski theories,

LcG =
M2

Pl

2
R− 1

2
(∇φ)2

(
1 +

□φ
2Λ3

)
+ (conformal couplings to matter), (2.58)

where Λ is the energy scale related to the late-time acceleration, Λ = (MPlH
2
0 )

1/3. We would like to study a static

spherically symmetric spacetime sourced by non-relativistic point source like a star. Expanding the Lagrangian

around Minkowski space, we obtain the effective Lagrangian,

Leff = (metric perturbations)− 1

2
(∂φ)2

(
1 +

∂2φ

2Λ3

)
+

1

MPl
φT. (2.59)

The first term is the schematic description of the kinetic term for h. T is the trace prat of the energy momentum

tensor for matter. The variations for h and φ yield the equations of motion. The equation of motion for h can

reproduce the usual laws, that is, Φ = Ψ and ∂rΦ = GM/r2. Focusing on the scalar part, the coupling to the

trace of the energy-momentum tensor sources the propagation of the scalar field. Roughly speaking, the geodesic
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Fig. 2.5 The image of the Vainshtein screening.

equation could be influenced by this scalar field as an external force. Note that this implies the violation of Φ = Ψ

in the Jordon frame, but now we analyzed the behavior of the gravitational fields in the Einstein frame. Thus,

the violation does not appear explicitly. However, thanks to the presence of the non-linear interaction (∂φ)2∂2φ,

the violation can be avoided. In the following discussion, we solve the equation of motion directly and show that

the propagation of the scalar field is suppressed in the sight of field-theoretic insights.

We analyze the dynamics of φ. Let us assume Tµ
ν = −Mδ(x)δµ0 δ

0
ν and φ = φ(r). Integrating the equation of

motion for ϖ with the regularity at the center of a matter, we obtain the following equation

∂rφ

r
+

1

H2
0

(
∂rφ

r

)2

=
GM

r3
. (2.60)

This is the schematic description, so we omitted numerical factors. The solution is given by

∂rφ(r) ≈

GM
r2

(
r
rv

)3/2
(r ≪ rv)

GM
r2 (rv ≪ r)

(2.61)

, where rv := Λ−1(M/MPl)
1/3 is called Vainshtein radius. Inside the Vainshtein radius, the gradient of the scalar

field can be suppressed by the second term in LHS, non-linear kinetic interactions. Thus, the scalar field does not

affect geodesic motions around matter as an external force. The value of rv is O(100) pc for Sun. For a galaxy

cluster, rv is O(1) Mpc. At least for Sun, the value of the Vainshtein radius is much larger than the size of the

Solar system. The cubic Galileon can pass the most tests of gravity on the Solar system scale.

We focus on the coupling to matter to interpret the physical meaning. Recalling the scalar part of the La-

grangian, it is given by

Lφ = −1

2
(∂φ)2

(
1 +

∂2φ

2Λ3

)
+

1

MPl
φT. (2.62)

Performing the field redefinition as

∂φ

√
1 +

∂2φ

2Λ3
→ ∂π, (2.63)
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the resultant Lagrangian is naively written by

Lπ ≈ −1

2
(∂π)2 +

1

MPl

√
1 + ∂2φ

2Λ3

πT. (2.64)

Using the solution for φ, Eq. (2.61), ∂2φ
2Λ3 ∼ (rv/r)

3/2. Then, on r ≪ rv, the coupling to matter is strongly

suppressed. So, we interpret the Vainshtein mechanism as the suppression of the propagation of the scalar field

due to non-linear kinetic interactions.

We expect that the Horndeski theory can pass the tests of gravity on the Solar system. However, the general

Horndeski theory does not always have successful Vainshtein screening thanks to self-interactions. In Ref. [64, 65],

(∂2ϕ)3 terms enhance the propagation of the scalar field, that is, the coupling to matter becomes enhanced rather

than suppressed. In the same situation, the perturbations around the Vainshtein solution have instabilities [66].

In order to have successful Vainshtein screening in Horndeski theories, we should set G5 to zero.

2.2.5 Quantum field-theoretic topics for modified gravity

In the context of the quantum field theory, the non-linear operators such as

−1

4
(∂φ)2

∂2φ

Λ3
(2.65)

are irrelevant operators which have negative mass dimension couplings. These operators cannot be renormalizable.

The non-renormalizability means the violation of the predictability as quantum theories because couplings in

theories should be observables which renormalized due to loop corrections. Thus, theories with irrelevant operators

must be regarded as Effective Field Theories (EFT) below a certain scale of negative mass dimension couplings.

This scale is called the cut-off scale. In the above example, the cut-off scale is Λ. In the cubic Galileon, there is

no problem as quantum field theory as long as we treat the phenomenology in the energy scale below the cut-off

scale Λ. Comparing this scale to the corresponding scale to the Vainshtein radius,

Λ ≫ Λ

(
MPl

M

)1/3

(= 1/rv). (2.66)

So the discussion for the Vainshtein screening at a classical level can be valid even if we take into account of

quantum effects [67, 68]. However, on the energy scale, Λ, irrelevant operators cannot be suppressed by the

cut-off scale, and then the discussion at a classical level is invalid due to back-reactions of non-perturbative

quantum effects. Theories lose their predictability. Most of these situations are regarded as the appearance

of new physics at this scale, and other sophisticated theories must appear thanks to a certain successful UV-

completed mechanism. For example, we expect the quantum gravity beyond GR exists below the Planck mass

scale.

In the context of EFT, EFT below cut-off scale should be constructed by adding possible terms based on

symmetry or integrating out heavy DoFs above the cut-off scale on an UV-complete theory. As a result, EFT has

infinite irrelevant operators suppressed by the cut-off scale, and it follows that EFT generally has Ostrogradsky

ghost due to higher derivatives. To see it, let us consider a below simple toy model in a flat space,

L = −1

2
(∂H)2 − 1

2
M2H2 − 1

2
(∂π)2 − 1

2
m2π2 − g

4
π2H2, (2.67)

where H and π are the heavy field and light field respectively (M ≫ m), and g is a coupling constant. Integrating

out the heavy field, the Lagrangian is schematically described by

L = −1

2
(∂π)2 − 1

2
m2

Rπ
2 −

∞∑
i=1

[
ci(g)

M2i
π4+2i +

di(g)

M2i
(∂π)2π2i + · · ·

]
. (2.68)



Chapter 2 Modified gravity 16

Fig. 2.6 The regions for some effects: classical, quantum, linear, and non-linear regions in scalar field.

The summation is understood as that of irrelevant operators andM is the cut-off scale. As you see, the summation

is not the combinations to eliminate the Ostrogradsky ghost. This picture seems to be compatible with ghost-free

scalar-tensor theories such as the Horndeski theory. In Ref. [69], the authors study the equation of motion in EFT

in a perturbative way. They show that the ghost-free combinations of operators can only affect physical solutions,

and the others are higher-order effects. This could imply that we should consider only ghost-free operators in

EFT.

In the previous sections, the propagation speed of GWs should be close to that of light in GW170817 observed

in advanced LIGO and its optical counterpart event. The sensitivity of the detector in LIGO is efficient on 100

Hz (the corresponding wavelength to it is O(1000) km). This scale is roughly equivalent to the cut-off scale based

on EFT of dark energy,

Λ = (MPlH
2
0 )

1/3 ∼ 100Hz. (2.69)

In Ref. [70], the authors point out this point and mention the uncertainty of the constraint on the speed of GWs in

the modified gravity model as an EFT. Based on their discussion, it will be clear whether their opinion is correct

or not with the detection of GWs with lower energy (longer wavelength) observed by spacecraft interferometer

LISA than that detected by LIGO. This discussion is based on the calculation in a flat space. On the other hand,

taking into account of the effect of curved backgrounds, the cut-off scale could be shifted. In Ref. [49], in the

background sourced by a point source, the cut-off scale can be renormalized by the ratio of the Vainshtein radius

to radial coordinate as

Λ → Λeff ≈ Λ
(rv
r

)3/4
. (2.70)

In the case of Earth, Λeff(rE) ∼ 10GHz. Thus, the stringent constraint on the speed of GWs could be valid in

modified gravity models. But, the validity of this discussion is beyond the scope of this doctoral thesis.

2.2.6 Cosmological dynamics

In this section, we would like to discuss the concrete cosmological dynamics of modified gravity. Let us consider

shift-symmetric Horndeski theories with cGW = 1. These models are viably applied to alternatives to dark energy
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and can capture the typical behavior of theories with Vainshtein screening. The Lagrangian is given by

L =
M2

Pl

2
R+G2(X)−G3(X)□ϕ. (2.71)

The background equations are given by

3M2
PlH

2 = ρm + ρϕ, (2.72)

M2
Pl(3H

2 + 2Ḣ) = −pm − pϕ, (2.73)

(a3J )· = 0, (2.74)

where

ρϕ = −G2 + J ϕ̇, (2.75)

pϕ = G2 − 2Xϕ̈G3X , (2.76)

J ϕ̇ = 2XG2X + 6Hϕ̇XG3X . (2.77)

The matter sector contains non-relativistic matter and radiation. From the field equation (2.74), J ∝ a−3.

Going through the early universe, inflation, J vanishes regardless of the initial value. Thus, these models have

the attractor, J = 0. On the attractor J = 0, we have

ρϕ = −G2, (2.78)

pϕ = G2 +
d lnX

d ln a
M2H2αB , (2.79)

J̇ ϕ̇ = 0 ↔ d lnX

d ln a
=

12αB

αK

d lnH

d ln a
. (2.80)

The α parameters are given by

M2
PlH

2αK = 2X(G2X + 2XG2XX) + 12HXϕ̇(G3X +XG3XX), (2.81)

M2
PlHαB = −ϕ̇XG3X . (2.82)

These can characterize the linear perturbations of this model. The EoS parameter is

wϕ :=
pϕ
ρϕ

= −1 +
2α

3(1− Ωm)

d lnH

d ln a
, (2.83)

α :=
6α2

B

αK
(2.84)

Substituting above equations into BG equations,

ρϕ
3M2H2

= 1− Ωm, (2.85)

d lnH

d ln a
= −3

2
Ωm

1

1 + α
, (2.86)

d lnΩm

d ln a
= −3(1− Ωm)− 3Ωm

α

1 + α
. (2.87)

Using above equation, the EoS parameter for the scalar field further reduces to

wϕ = −1− Ωm

1− Ωm

α

1 + α
. (2.88)

We would like to study the time evolution directly. Most of all models are not solved analytically, but one can

obtain it in the following situation as an example. Let us consider analytic models with the tracker condition (for
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detailed discussion, see [71, 72]). We assume that the arbitrary functions depend only on a power-law function

of X as

G2 = −c2M2
PlH

2
0

(
X

M2
PlH

2
0

)p

, G3 = c3MPl

(
X

M2
PlH

2
0

)p3

, (2.89)

where p, q, c2, c3 are constants. Then, we also assume the tracker condition ϕ̇2qH = const. and the present Hubble

parameter H0. This means that we obtain the equation H =
(

X
M2

PlH
2
0

)−q

H0 if we set the present value for the

kinetic energy of the scalar field X0 =M2
PlH

2
0 , and q = −αK/(12αB) = const. by using Eq. (2.80). Substituting

these ansatzes to the attracter J = 0, we obtain the condition for the coefficients and the relation between each

power of X

p3 = p+ q − 1/2, (2.90)

− pc2 + 3 · 21/2−qc3p3 = 0. (2.91)

These imply that parameters are

Ωϕ =
c2

3 · 2p/q

(
H0

H

)2+p/q

, (2.92)

αB = − 3p3c3
21/2c2

Ωϕ =: cBΩϕ, (2.93)

αK = −12qαB =: cKΩϕ. (2.94)

From the above equations, the energy density of the scalar field becomes suppressed during an early universe if

the models are satisfied with 2 + p/q > 0(it is called cosmological V ainshtein mechanism [74]) . Most of the

scalar-tensor theories cannot be satisfied with this simple description because we restrict the form of arbitrary

functions to one power-law term of X. Generally, arbitrary functions are polynomials with respect to X, and α

parameters are not described by Ωϕ directly (for instance, see [73]).

Closing the late-time universe, the component of the scalar field becomes dominated. In this case, the EoS

parameter wϕ is

wϕ = −1− c Ωm

1 + c (1− Ωm)
, (2.95)

c :=
6c2B
cK

(2.96)

At the asymptotic limit, i.e., early time a≪ 1 and DE dominance (a ≈ 1), it reduces to

wϕ ≈

{
−(1 + c) (a≪ 1),

−1 (a ≈ 1).
(2.97)

Thus, in the dominant stage of the scalar field, the de Sitter expansion can be realized. This behavior is the same

as that of the self-accelerating solution in Sec. 2.2.3. This behavior is not general in Horndeski theories. There

exist models that cannot be analytically solved have this typical attractor behavior during the evolution of the

universe.

In this section, we study very viable models that have the so-called tracker solution as an alternative to the CC.

There are other models such as the early dark energy model [75] and the model which has the scaling solution [76].

In general, the dark energy constituent can become a sub-dominant component before the late-time acceleration

phase while in the tracker scenario, the dark energy is much more suppressed than other components. If the dark

energy becomes dominated before late times, the expansion history of the universe is modified. For example,
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CMB observables are very sensitive to this fact. In Ref. [77], the authors analyze the angular power spectrum

for temperature fluctuations in the theory,

L = ϕR− ω(ϕ)

ϕ
(∂ϕ)2,

2ω(ϕ) + 3 =
[
α2
0 − β ln (ϕ/ϕ0)

]−1
, (2.98)

where ϕ0, α0, and β are the present value of ϕ and constants. The pattern of the amplitude oscillation is

characterized by the BAO (Baryon Acoustic Oscillation), and this pattern is shifted due to the modification of

the expansion history on early stages of the universe (Fig. 2.7). It could be no consistent scenario for dark energy

without the tracker scenario.

Fig. 2.7 The angular power spectrum for CMB temperature fluctuations in each value of the constants:

the pattern of the amplitude oscillation is shifted due to the modification of the expansion history on early

stages of the universe. For detailed discussion, see Ref. [77].
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Chapter 3

Degenerate Higher-Order Scalar-Tensor (DHOST)

theories

In this chapter, I introduce the recent developments of ghost-free scalar-tensor theories, in particular Degenerate

Higher-Order Scalar-Tensor (DHOST) theories [21, 22, 23, 24, 25, 26, 27].

3.1 Ostrogradsky ghost

We will show that there is a ghost mode, so-called Ostrogradsky ghost [16, 17], due to higher derivatives in the

analytical mechanics. Let us consider the Lagrangian L = L(q, q̇, q̈), where q(t) is the position of a particle.

Varying with respect to q, we obtain Euler-Lagrange equation,

dL

dq
− d

dt

dL

dq̇
+

d2

dt2
dL

dq̈
= 0. (3.1)

Because of d2/dt2(dL/dq̈) ̸= 0 in general, this equation is the 4th-order system. Changing the variables q and q̇

to Q1 and Q2 respectively and defining its canonical momentum as follows,

P1 :=
dL

dq̇
− d

dt

dL

dq̈
, (3.2)

P2 :=
dL

dq̈
, (3.3)

the Hamiltonian is given by

H = P1Q2 + P2f(Q1, Q2, P2)− L, (3.4)

where f is the function in terms of Q1, Q2, and P2. P1 and Q2 have arbitrary signs with motion. Thus, the

Hamiltonian is unbound below. Returning to the Lagrangian picture, the system has a mode with the positive

kinetic term and the other with the negative kinetic term. (Here, I do not show this fact directly. For example,

see Ref. [17]) The appearance of the additional DoF would be equivalent to the system with a mode with the

negative kinetic term. This additional DoF is called ”Ostrogradsky ghost.”

In order to construct ghost-free theories with higher derivatives, we must eliminate this Ostrogradsky ghost

under the construction of theories. In this section, we consider the system written by the single variable q with its

second derivatives. Avoiding the Ostrogradsky ghost, we must eliminate the dependence of q̈ in the Lagrangian.

Moving to the multi-variables system, this condition changes.

3.2 Degenerate theories

Next, let us consider below multi-variables system with second-order derivatives

L =
1

2
aϕ̈2 +

1

2
k0ϕ̇

2 +
1

2
kij q̇

iq̇j + biϕ̈q̇
i + ciϕ̇q̇

i − V (ϕ, qi), (3.5)
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where there are 4 DoFs, ϕ(t), and qi(t) (i = 1, 2, 3). a, k0 are constants, and bi, ci are constant vectors, and

kij is a constant tensor. As treated in the previous section, we define the new variables by using a Lagrangian

multiplier. Instead of ϕ̇, we use Q as

L =
1

2
aQ̇2 +

1

2
kij q̇

iq̇j + biQ̇q̇
i + ciQq̇

i +
1

2
k0Q

2 − V (ϕ, qi) + λ(Q− ϕ̇), (3.6)

where λ is the Lagrange multiplier. The Euler-Lagrange equations are given by(
a bi
bj kij

)(
Q̈
q̈i

)
=

(
ciq̇

i + k0Q− λ

−cjQ̇− ∂V
∂qj

)
, (3.7)

ϕ̇ = Q, (3.8)

λ̇ = −∂V
∂ϕ

. (3.9)

The matrix

(
a bi

bj kij

)
is called kinetic matrix. If this matrix is invertible, we need ten initial conditions to

solve the system. Then, there exists an additional DoF, that is, Ostrogradsky ghost. If the kinetic matrix is

non-invertible, Dofs are degenerate. Then, the additional cannot appear on the system. The invertibility of the

kinetic matrix reads off

det

(
a bi
bj kij

)
= 0 ↔ det kij · [a− bibj(k

−1)ij ] = 0. (3.10)

In general det kij ̸= 0, then the condition which the kinetic matrix is not invertible is a − bibj(k
−1)ij = 0.

This condition is called degeneracy condition. Applying this trick to eliminate the Ostrogradsky ghost, one can

construct multi-variables systems with second-order derivatives, such as scalar-tensor theories.

3.3 Quadratic DHOST theories

In this section, let us consider scalar-tensor theories with second-order derivatives up to quadratic order (as for

detailed discussions, see Refs. [21, 22]). The general Lagrangian is given by

S[ϕ, g] =

∫
d4x

√
−g [G2(ϕ,X)−G3(ϕ,X)□ϕ+ f(ϕ,X)R+ Cµνρσ(ϕ,X)ϕµνϕρσ] , (3.11)

where

Cµνρσ(ϕ,X) =
1

2
a1(ϕ,X)(gµρgνσ + gµσgνρ) + a2(ϕ,X)gµνgρσ +

1

2
a3(ϕ,X)(ϕµϕνgρσ + ϕρϕσgµν)

+
1

4
a4(ϕ,X)(ϕµϕρgνσ + ϕνϕρgµσ + ϕµϕσgνρ + ϕνϕσgµρ) + a5(ϕ,X)ϕµϕνϕρϕσ, (3.12)

with X = −∇µϕ∇µϕ/2, ϕ
µ = ∇µϕ, and ϕµν = ∇ν∇µϕ. f, ai(i = 1, · · · , 5) are arbitrary functions in terms of ϕ

and X.

First, let us define the new variables by using a Lagrangian multiplier. Instead of ϕµ, we use Aµ. The action

related to the kinetic structure is given by

Skin =

∫
d4x

√
−g [f(ϕ,X)R+ Cµνρσ(ϕ,X)∇µAν∇ρAσ + λµ(ϕµ −Aµ)] , (3.13)

where λµ is the Lagrange multiplier.

To analyze the time evolution, we do the ADM decomposition. We assume the existence of a 3-dimensional

spacelike hypersurface. We introduce the normal vector nµ which is time-like. Then, the induced metric is given

by hµν = gµν+nµnν . Using these geometrical quantities, we can express the projection of Aµ to the hypersurface

Âµ = hνµAµ, (3.14)



Chapter 3 Degenerate Higher-Order Scalar-Tensor (DHOST) theories 22

and its normal component of Aµ

A = nµAν . (3.15)

We also introduce the time direction vector tµ which can be written by

tµ = Nnµ +Nµ, (3.16)

where Nµ is orthogonal to nµ. N is the lapse function, and Nµ is the shift vector. Using this vector, the time

derivative is determined as the Lie derivative with respect to it. We have

Ȧ := tµ∇µA. (3.17)

Also, the dynamics of the hypersurface is described by the extrinsic curvature

Kµν =
1

2N
(ḣµν −DµNν −DνNµ), (3.18)

where Dµ denotes the covariant derivative associated with hµν .

Doing the ADM decomposition of Eq. (3.13), we obtain below kinetic part of the theories [21, 22]

Lkin = AȦ2 + 2BµνȦKµν +KµνρσKµνKρσ, (3.19)

where

A =
1

N2
[a1 + a2 − (a3 + a4)A+ a5A

2], (3.20)

Bµν =
A

2N
(2a2 − a3A

2 + 4fX)hµν − A

2N
(a3 + 2a4 − 2a5A

2)ÂµÂν (3.21)

Kµνρσ = (a1A
2 + f)hµ(ρhν)σ + (a2A

2 − f)hµνhρσ + · · · . (3.22)

The structure of this Lagrangian is same as that in previous section, Eq. (3.6). The correspondence is

A↔ Q, Kµν ↔ q̇i, A ↔ a, Bµν ↔ bi, Kµνρσ ↔ kij . (3.23)

So, the degeneracy condition is given by

A− BµνBρσK−1
µνρσ = 0. (3.24)

The case A = 0 and B = 0 corresponds to Horndeski theories. More general case A ̸= 0 and B ̸= 0 corresponds

to DHOST theories. The explicit form of this condition and its classification are given by [21, 22].

Applying to cosmology, DHOST theories must be stable under perturbations around the FLRW background.

In Ref. [78, 79], the authors study the stability of tensor perturbation in the quadratic DHOST theories. They

find that the stable class in the theory is conformally/ disformally related to the Horndeski theories. This class

is called class I DHOST theory [21, 22]. The degeneracy conditions read off

a2 = −a1 ̸= −f/X, (3.25)

a4 =
1

8(f − a1X)2
{4f [3(a1 − 2fX)2 − 2a3f ]− a3X

2(16a1fX + a3f)

+ 4X(3a1a3f + 16a21fX − 16a1f
2
X − 4a31 + 2a3ffX)} (3.26)

a5 =
1

8(f − a1X)2
(2a1 − a3X − 4fX)[a1(2a1 + 3a3X − 4fX)− 4a3f ]. (3.27)

Thus, there are 5 free functions G2, G3, f , a1, and a3.
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3.4 Partial breaking of Vainshtein screening

As we see in Sec. 2.2.4, modified gravity models recover the standard result in GR in the Solar system. In

the class I DHOST theory, however, the standard behavior of the gravitational potentials is recovered around

matter while it is violated inside matter [80, 81, 82, 83, 84]. The gradients of gravitational potentials inside the

Vainshtein radius are given by

dΦ

dr
=
GM(r)

r2
+Υ1

GM ′′(r)

4
, (3.28)

dΨ

dr
=
GM(r)

r2
− 5Υ2

4

GM ′(r)

r
+Υ3GM

′′(r), (3.29)

where

(8πG)−1 = 2f − 2XfX − 6X2a3, (3.30)

Υ1 = − (fX +Xa3)
2

a3f
, (3.31)

Υ2 =
8XfX
5f

, (3.32)

Υ3 =
f2X −X2a23

4a3f
. (3.33)

M(r) is enclosed mass inside a radius r and G is the gravitational constant in DHOST theories. Thus, the strength

of the partial breaking inside matter depends on Υ parameters, and in particular, Υ1 is used for constraints on

DHOST theories. Existing constraints on DHOST theories mainly come from the Newtonian stellar structure

modified due to the partial breaking of the Vainshtein mechanism, which is characterized by a single parameter

Υ1(the definition here is for theories with c2GW = 1) [80, 82, 83]. The lower bound on Υ1 has been obtained

from the requirement that gravity is attractive at the stellar center: Υ1 > −2/3 [85]. The upper bound is given

by comparing the minimum mass of stars with the hydrogen burning with the minimum mass of observed red

dwarfs: Υ1 < 1.6 [86]. There are several attempts for improving the above bounds [87, 88, 89, 90, 91], including

the one concerning the speed of sound in the atmosphere of the Earth [90].

3.5 GWs constraints

As we see in Sec. 2.2.3, we can constrain the speed of GWs close to that of light. In the class I DHOST theories,

the propagation speed of GWs on a FLRW spacetime is given by [78, 79]

c2GW =
f

f −Xa1
. (3.34)

Thus, we must choose a1 = 0 for c2GW = 1.

The dark energy field spontaneously breaks Lorentz symmetry. So graviton can decay into the dark energy

field. Usually, this channel is not more efficient than other scatterings. In Ref. [92, 93], the authors study efficient

decay channels of graviton into the dark energy field in the context of effective field theory of dark energy. The

most efficient interaction is given by

Sγππ =
M2

plm̃
2
4

M2
pl + 2m̃2

4

∫
d4x γ̈ij∂iπ∂jπ, (3.35)

where γij is tensor perturbations and π is dark energy field. m̃4 is the time-dependent mass scale related to

background spacetime. (see Ref. [92] for details) In this calculation, they assume that the propagation speed of
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GWs is unity. The ratio of the decay rate to the present Hubble is given by

Γγππ

H0
= 1020

(
Λ3

Λ⋆

)6
(1− c2s)

2

480πc7s
, (3.36)

where cs is the propagation speed of dark energy field which in general is not unity. Λ⋆ is the model-dependent

parameter. Estimating the ratio, we chose the energy of graviton to the scale which is observed in advanced

LIGO, Λ3. This is because GWs propagating on cosmological distance has been observed in advanced LIGO.

Thus, this huge ratio must be much smaller than unity. In the class I DHOST theory with cGW = 1,

Λ3

Λ⋆
∝ a3. (3.37)

So a3 should vanish.

Under the above two GWs constraints, the resultant class I DHOST theory which is viable to explain the origin

of the late-time acceleration is given by

L = G2(ϕ,X)−G3(ϕ,X)□ϕ+ f(ϕ,X)R+
3f2X
2f

ϕµϕµσϕ
σνϕν . (3.38)

The disformal coupling to matter can change the propagation speed of graviton. Of course, this theory is related

to the viable Horndeski theory through the conformal transformation without matter [92]. The explicit form of

this theory in the Einstein frame is given by

S =

∫
d4x

√
−g

[
G2(ϕ,X)−G3(ϕ,X)□ϕ+

M2
Pl

2
R

]
+

∫
d4x

√
−g̃ Lm(g̃µν ,Ψm), (3.39)

g̃µν =
1

f(ϕ,X)
gµν , (3.40)

where Lm is the Lagrangian of matter and Ψm is its field. Note that the screening mechanism in this surviving

theory is different from that of generic quadratic DHOST theories. We will discuss this topic in the next section.
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Chapter 4

On the screening mechanism in DHOST theories

evading gravitational wave constraints

In this chapter, we study the screening mechanism in a subclass of DHSOT theories in which GWs propagate

at the speed of light and do not decay into scalar fluctuations. This topic is based on S. Hirano, T. Kobayashi

and D. Yamauchi, “Screening mechanism in degenerate higher-order scalar-tensor theories evading gravitational

wave constraints,” Phys. Rev. D 99 (2019) no.10, 104073 [arXiv:1903.08399 [gr-qc]] [28].

As we saw in the previous section, the Lagrangian for DHOST theories in which gravitons propagate at the

speed of light and do not decay into dark energy is described by

L = G2(ϕ,X)−G3(ϕ,X)□ϕ+ f(ϕ,X)R+
3f2X
2f

ϕµϕµσϕ
σνϕν , (4.1)

where R is the Ricci scalar, ϕµ = ∇µϕ, ϕµν = ∇µ∇νϕ, X := −ϕµϕµ/2, and fX = ∂f/∂X. Cosmology derived

from the Lagrangian (4.1) is explored in Ref. [117]. It turns out that in this particular subclass of DHOST theories

the screening mechanism operates in a different way from that in generic DHOST theories, as already inferred

in Ref. [92]. The purpose of the present chapter is to clarify how the (breaking of the) Vainshtein screening

mechanism occurs in the above theory.

4.1 Screening mechanism in DHOST theories without graviton decay

A weak gravitational field is described by the line element

ds2 = −[1 + 2Φ(t,x)]dt2 + [1− 2Ψ(t,x)]dx2, (4.2)

with the scalar-field configuration

ϕ = ϕ0(t) + π(t, x⃗). (4.3)

Here, ϕ0(t) is a slowly evolving background determined from the cosmological boundary condition and π(t,x) is

a fluctuation. Since we are interested in gravity on scales well inside the horizon, we ignore the cosmic expansion.

Following Refs. [66, 80], we expand the action in terms of the metric perturbations and π, keeping the higher-

derivative terms relevant to the screening mechanism in the quasi-static regime. The resultant effective Lagrangian

is given by

Leff = f

[
−2Ψ∂2Ψ+ 4(1− 2β)Ψ∂2Φ− η

2f
(∂π)2 + 4β

(
1− 3β

2

)
Φ∂2Φ+

4ξ

f1/2
Ψ∂2π +

2(α− ξ)

f1/2
Φ∂2π

+
α

fΛ3
(∂π)2∂2π +

2β (1− 3β)

f1/2Λ3
(∂π)2∂2Φ− 4β

f1/2Λ3
(∂π)2∂2Ψ+

6β2

fΛ6
∂iπ∂jπ∂i∂kπ∂k∂jπ

+
6β2

f1/2Λ3
(∂π̇)2 − 4β(1− 3β)ϕ̇0

f1/2Λ3
Φ∂2π̇ +

8βϕ̇0
f1/2Λ3

Ψ∂2π̇ +
6β2ϕ̇0
fΛ6

(∂π)2∂2π̇

]
− Φρ, (4.4)
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where we introduced dimensionless quantities

α :=
ϕ̇20G3X

2f1/2
, β :=

ϕ̇20fX
2f

, ξ :=
fϕ
f1/2

, (4.5)

and defined an energy scale Λ := (ϕ̇20/f
1/2)1/3. The dot denotes the differentiation with respect to t. The explicit

expression for the coefficient η is not important here. In deriving the Lagrangian (4.4) we ignored ϕ̈0 since ϕ0

is a slowly varying field. We assume that matter is minimally coupled to gravity, so that we add the term −Φρ

where ρ = ρ(t,x) is the density of a nonrelativistic matter source. The Lagrangian (4.4) is a particular case of

the general effective Lagrangian for the Vainshtein mechanism in DHOST theories [81, 82, 83]. However, the

screening mechanism in this particular subclass operates in a very different way than in generic cases, as we will

see below.

Let us consider a spherically symmetric matter distribution, ρ = ρ(t, r), where r is the radial coordinate.

Varying the action with respect to Ψ, Φ, and π, we obtain the following equations:

(1− β)ξx+ (1− 2β)y − z − 2βx(rx)′ +
2ϕ̇0
Λ3

βẋ = 0, (4.6)

[α− ξ + (1− 3β)βξ]x+ 2β(2− 3β)y + 2(1− 2β)z

+ 2β(1− 3β)x(rx)′ − 2ϕ̇0
Λ3

β(1− 3β)ẋ = A, (4.7)

and

F(x, ẋ, x′, ẍ, ẋ′, x′′, y, ẏ, y′, z, ż, z′) = 0, (4.8)

where the prime denotes differentiation with respect to r and we defined the dimensionless variables as

x :=
π′

Λ3r
, y :=

f1/2Φ′

Λ3r
, z :=

f1/2Ψ′

Λ3r
, (4.9)

A :=
1

8πϕ̇20

M(t, r)

r3
=

1

8πf1/2Λ3

M(t, r)

r3
, (4.10)

with

M(t, r) := 4π

∫ r

0

ρ(t, r̄)r̄2dr̄ (4.11)

being the mass contained within r. In deriving Eqs. (4.6)–(4.8) we integrated the field equations once and fixed

the integration constants so that x, y, and z are regular at r = 0. The explicit form of F is complicated.

From Eqs. (4.6) and (4.7) we have

y =
A+ 2β(1− β)x(rx)′

2(1− β)2
+ c1x− ϕ̇0

Λ3

β

1− β
ẋ, (4.12)

z =
(1− 2β)A− 2β(1− β)x(rx)′

2(1− β)2
+ c2x+

ϕ̇0
Λ3

β

1− β
ẋ, (4.13)

where c1 and c2 are written in terms of α, β, and ξ. Then, substituting Eqs. (4.12) and (4.13) to Eq. (4.8), we

obtain

4(α− 3βξ)(1− β)x2 +

[
c3 − 2β(1− β)

(r3A)′

r2

]
x = [α+ (1− 2β)ξ − 2ζ]A− 2ϕ̇0

Λ3
(1− β)βȦ, (4.14)

where we defined

ζ :=
ϕ̇20fϕX
2f1/2

, (4.15)
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and the explicit expression for c3 (which is written in terms of α, β, etc. and their time derivatives) is not

important. As expected from the degeneracy of the theory, the final result (4.14) is just an algebraic equation

for x, with no derivatives acting on x. In generic quadratic DHOST theories, however, one would obtain at this

final stage a cubic equation for x. The present theory is special in the sense that the coefficient of the cubic term

vanishes identically.

From now on, let us consider the case where the source is static, ρ = ρ(r). Then, since we are assuming that

ϕ̇0 is approximately constant, A is also independent of time. Thus, Ȧ in Eq. (4.14) can be neglected.

One may define the typical radius rV below which nonlinearities are large by A(rV ) = 1. We are mainly

interested in the solutions to Eq. (4.14) for A≫ 1 both inside and outside the matter source. Outside the matter

distribution we have A ∝ r−3, whereas we have (r3A)′ ̸= 0 inside.

Let us first consider the exterior region. For A≫ 1 we have

x ≃ ±1

2

[
α+ (1− 2β)ξ − 2ζ

(α− 3βξ)(1− β)
A

]1/2
. (4.16)

From this it can be seen that the terms linear in x in Eqs. (4.12) and (4.13) are suppressed relative to the other

terms. We thus find, irrespective of the sign of Eq. (4.16), that

y ≃ α(4− β)− β(13− 2β)ξ + 2βζ

8(α− 3βξ)(1− β)2
A, (4.17)

z ≃ α(4− 7β)− 11β(1− 2β)ξ − 2βζ

8(α− 3βξ)(1− β)2
A, (4.18)

This shows that Φ ̸= Ψ in general, implying that the present subclass of DHOST theories does not evade the

solar-system constraints. However, if the parameters satisfy*1

3α− ξ(1 + 10β) + 2ζ = 0, (4.19)

GR is recovered, yielding

y = z =
A

2(1− β)
,

⇔ Φ′ = Ψ′ =
1

16πf(1− β)

M

r2
. (4.20)

The effective gravitational constant is given by

GN,out =
1

16πf(1− β)
. (4.21)

Thus, fine-tuning is needed in order for the screening mechanism to work successfully in the vicinity of a source.

This is in contrast to generic DHOST theories [80, 81, 82, 83].

Next, let us look at the interior region. We have two branches, one of which is given by

(I) : x ≃ β

2(α− 3βξ)

(r3A)′

r2
≫ 1, (4.22)

and the other by

(II) : x ≃ −α+ (1− 2β)ξ − 2ζ

2β(1− β)

r2A

(r3A)′
= O(1). (4.23)

*1 More precisely, the condition for successful screening is β[3α− ξ(1 + 10β) + 2ζ] = 0. Clearly, the case with β = 0 corresponds

to the subclass of the Horndeski theory. This is the trivial case exhibiting the Vainshtein mechanism [64, 65, 66].
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In Branch I, the behavior of gravity is far away from the normal one:

y =
9β3

(1− β)3ξ2
(r3A)′

r3

[
(r3A)′′ − (r3A)′

r

]
+O(A), (4.24)

z = − 9β3

(1− β)3ξ2
(r3A)′

r3

[
(r3A)′′ − (r3A)′

r

]
+O(A), (4.25)

where Eq. (4.19) was assumed. It then follows that

Φ′ ≃ −Ψ′ ∝ M ′M ′′

r2
− (M ′)2

r3
. (4.26)

We therefore conclude that this branch would not describe the stellar structure appropriately, and hence must

be excluded.

Branch II is phenomenologically more interesting. In this branch, all x’s in Eqs. (4.12) and (4.13) can be

neglected, leading to

y =
A

2(1− β)2
, z =

(1− 2β)A

2(1− β)2
.

⇔ Φ′ =
1

16πf(1− β)2
M

r2
, Ψ = (1− 2β)Φ. (4.27)

From this we see that the effective gravitational constant inside the matter distribution is different from the

exterior value by a factor of (1− β)−1:

GN,in =
GN,out

1− β
. (4.28)

This must be contrasted with the way of breaking the screening mechanism in generic DHOST thoeries, where

M ′ and M ′′ appear in Φ′ and Ψ′ as corrections to the standard gravitational law with the same gravitational

constant as the exterior one [80, 81, 82, 83]. We also see that Φ and Ψ do not coincide in the matter interior.

One should note that Eq. (4.19) is not used to derive Eq. (4.27).

Let us finally comment on the solution for A ≪ 1. We have two branches, namely, x ∼ y ∼ z ∼ A and

x ∼ y ∼ z ∼ 1. By inspecting the explicit solutions to Eq. (4.14), we find that the former branch, which is

phenomenologically more acceptable, is matched onto Branch II if

β(1− β)c3 < 0 (4.29)

is satisfied.

As an example, we show in Fig. 4.1 the Branch II profiles of x, y, and z for A(r) = B(r)/B(1000) (namely,

rV = 1000) with B(r) = (r3 + 1)−1. The density profile mimics a star with the radius r ∼ 1. The parameters

are given by ξ = α = 1, β = ζ = 1/4, and c3 = 1. (For x we plot an exact solution to Eq. (4.14), but for y and z

the terms linear in x are ignored because they are subdominant for r ≪ rV .)

We also present in Fig. 4.2 the Branch II solution for the NFW density profile, ρ(r) = ρ0/[(r/rs)(1 + r/rs)
2]

with rs = 1 and ρ0 chosen so that rV = 1000. The parameters are again given by ξ = α = 1, β = ζ = 1/4, and

c3 = 1. Since there is no definite surface in this case, we see deviations from GR everywhere.

4.2 Observational constraints

We have seen that though the particular subclass of DHOST theories (4.1) could evade solar-system tests by

requiring the fine-tuned relation (4.19), (i) Φ and Ψ do not coincide inside the matter distribution, and (ii) the

gravitational constant in the matter interior is different from its exterior value. Let us discuss briefly possible

observational constraints on such modifications of gravity.
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Fig. 4.1 An example of a Branch II solution for rV = 1000 and the stellar radius ∼ 1. The dashed line

corresponds to the potentials in GR with the gravitational constant GN,out.
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Fig. 4.2 The Branch II solution for the NFW density profile. The dashed line corresponds to the potentials

in GR with the gravitational constant GN,out.

The difference between the two potentials in the nonvacuum region, Ψ/Φ − 1 = −2β, can be measured by

comparing the X-ray and lensing profiles of galaxy clusters, as has been investigated for different types of modifi-

cations in Refs. [113, 118, 119]. In particular, the constraints obtained for beyond Horndeski theories in Ref. [113]

read |Φ/ΦGR − 1| < O(10−1) and |Ψ/ΨGR − 1| < O(10−1). Thus, we would expect constraints of the same order

of magnitude, |β| < O(10−1), from galaxy clusters.

A different value of the gravitational constant inside the Sun would lead to changes in the solar structure, and

thereby modify the sound speed and solar neutrino fluxes. Based on the solar standard model, it has been argued

that a relative difference of O(10−2) is still allowed by observations [120]. Thus, the Sun could potentially be

used to test a different value of the gravitational constant inside extended objects.

Note, however, that currently the most stringent bound comes from the difference between the measured value

of the gravitational constant, GN (= GN,out or GN,in), and the gravitational coupling for GWs, GGW, which is

constrained from the orbital decay of the Hulse-Taylor pulsar: −7.5×10−3 < GGW/GN −1 < 2.5×10−3 [83, 121].

In the present case, we have GGW = (16πf)−1 [78, 79], so the constraint is given by

|β| < O(10−3), (4.30)

which is orders of magnitude tighter than the possible constraint from galaxy clusters.
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4.3 Summary

In this chapter, we have studied the screening mechanism in a particular subclass of degenerate higher-order

scalar-tensor (DHOST) theories in which the speed of GWs is equal to the speed of light and gravitons do not

decay into scalar fluctuations. By inspecting a spherically symmetric gravitational field, we have found that

the screening mechanism operates in a very different way from that in generic DHOST theories [80, 81, 82, 83].

First, the fine-tuning is required so that solar-system tests are evaded in the vacuum exterior region. This is

in contrast to generic DHOST theories, in which the implementation of the Vainshtein screening mechanism

outside the matter distribution is rather automatic. Second, the way of the Vainshtein breaking inside extended

objects is also different from that in generic DHOST theories. We have shown that in the interior region the

metric potentials obey the standard inverse power law, but the two do not coincide. Moreover, the effective

gravitational constant differs from its exterior value. However, the current most stringent bound comes from the

fact that the effective gravitational coupling for GWs is different from the Newtonian constant [83, 121], rather

than from the above interesting phenomenology. The obtained constraint is as tight as∣∣∣∣XfXf
∣∣∣∣ < O(10−3). (4.31)

Thus, we conclude that the allowed parameter space is small for DHOST theories as alternatives to dark energy

evading gravitational wave constraints.
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Chapter 5

Constraining DHOST theories with linear growth

of density fluctuations

In this chapter, we investigate the potential of cosmological observations, such as galaxy surveys, for constraining

DHOST theories, focusing in particular on the linear growth of the matter density fluctuations. This topic

is based on S. Hirano, T. Kobayashi, D. Yamauchi and S. Yokoyama, “Constraining degenerate higher-order

scalar-tensor theories with linear growth of matter density fluctuations,” Phys. Rev. D 99 (2019) no.10, 104051

[arXiv:1902.02946 [astro-ph.CO]] [29].

One of the most stringent constraints on gravity theories is obtained from the gravitational wave event

GW170817 [52] and its optical counterpart GRB 170817A [53], which gave the constraint on the speed of GWs,

cGW, as |cGW − 1| ≲ 10−15. This observation can be used to rule out scalar-tensor theories which predict a vari-

able gravitational-wave speed at low redshifts [95, 96, 98, 99, 100, 101, 82]. One finds that there still is a broad

class of viable scalar-tensor theories. In particular, a certain subclass of quadratic DHOST theories [21, 22, 23]

survived after this event.

Of course, even before GW170817 lots of stringent constraints on local gravity had been obtained, implying

that gravity must be consistent with GR at least on small scales and in the weak gravity regime. Therefore,

viable scalar-tensor theories are required to have a mechanism that suppresses the fifth force mediated by the

scalar field on small scales, and Vainshtein screening is a typical one of such mechanisms in the Horndeski and

related theories. Interestingly, DHOST theories generically exhibit Vainshtein screening outside matter, whereas

its partial breaking occurs inside [80, 82, 81, 83]. As the gravitational laws inside an astrophysical body differ

from the standard ones, this phenomenon leads to a modification of its internal structure, which can be used

to constrain DHOST theories [85, 86, 87, 88, 89, 90]. The authors of Ref. [83] applied this idea to the DHOST

theories satisfying c2GW = 1 and obtained constraints on the parameters which characterize the theories.

In this chapter, in addition to the above constraints, we investigate the possibility of constraining DHOST

theories from the current/future precise cosmological observations. In particular, we focus on the linear evolution

of the matter density fluctuations, which can be measured by observations of large scale structure. Measuring the

linear growth rate of large-scale structure, f(a), is known to be a powerful tool to test modifications of gravity

responsible for the present cosmic acceleration. To compare the observational data with theoretical predictions,

the simplest approach is to introduce an additional parameter called gravitational growth index, γ, defined in

terms of the linear growth rate and the fraction parameter of non-relativistic matter Ωm as [122]

γ :=
d ln f

d lnΩm
. (5.1)

The purpose of this chapter is to obtain a novel constraint on DHOST theories with c2GW = 1 from the observations

of the linear growth rate. To do so, we develop a formalism to describe DHOST cosmology during the matter

dominated era and the early stage of the dark energy dominated era, and evaluate the growth index at high
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redshifts. We expect that the current observations of the growth index yield new constraints on DHOST theories

which are complementary to the existing bounds.

The chapter is organized as follows. In Sec. 5.1, We introduce cosmological perturbations and overview the

evolution of density fluctuations. In Sec. 5.2, we derive cosmological background equations in class I quadratic

DHOST theories. Then we consider linear cosmological perturbations and derive the evolution equation of the

density fluctuations. In Sec. 5.3, we introduce our formalism to model DHOST cosmology and evaluate the

growth index as a probe of modifications gravity. We thereby give novel constraints on DHOST theories from

current observations in Sec. 5.4. Finally, we discuss our results and future prospects in Sec. 5.5.

5.1 Cosmological perturbations

Inflation and Big-Bang cosmology pass many cosmological observations. Inflation is the accelerating expansion

of the universe and can solve the problems of Big-Bang cosmology. Also inflation generate the seed of the density

fluctuations of large scale structure. In this section, we see the evolution of density fluctuations based on the

initial conditions generated by inflation.

Let us consider so-called cosmological perturbation around a background spacetime. The metric is given by

gµν = ḡµν + δgµν , where ḡµν is the background metric and δgµν is the metric pertrubation. From the Einstein

equations, the equations of motion in terms of the linear perturbation is given by

δGµν(δgµν) = 8πGδTµν . (5.2)

This is the perturbed Einstein equations. Determining the form of the metric perturbations δgµν , we derive the

dynamics of these from above equations.

5.1.1 Metric perturbations and gauge freedom

The metric perturbation δgµν depends on gauge transformations because the theory has 4D-diffeomorphism. Due

to an infinitesimal transformation xµ → x̃µ := xµ+ ξµ, the transformation of δgµν is given by the Lie derivative

along ξµ, that is,

δg̃µν = δgµν − ḡµν,ρξ
ρ − ḡµρξ

ρ
,ν − ḡρνξ

ρ
,µ. (5.3)

For convention, we decompose δgµν to the scalar, vector, and tensor-type variables under the symmetry in FLRW

spacetime, O(3) . The concrete form of the metric perturbation is given by

ds2 = −(1 + 2A)dt2 − 2a(B,i + Si)dtdx
i + a2[(1− 2ψ)δ + 2E,ij + 2F(i,j) + hij ]dx

idxj , (5.4)

where A, B , ψ, and E are the scalar-type variables, and Si, Fi are the vector-type variables, and hij is the

tensor-type variable. The vector type is transverse, and the tensor type is transverse and traceless. Thanks to

linearity, the equations of motion on each types are independent of the other types. In the following discussion,

we focus on the scalar-type perturbations at a linear level to mention the dynamics of density fluctuations. The

scalar perturbations are given by

ds2 = −(1 + 2A)dt2 − 2aB,idtdx
i + a2[(1− 2ψ)δ + 2E,ij ]dx

idxj . (5.5)

For example, ψ is related to a geometric quantity. Let us consider a t = const. hypersurface. Then, the intrinsic

curvature is given by

(3)R =
4

a2
∂2ψ, (5.6)
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where ∂2 := δij∂i∂j is the 3-dimensional spatial Laplacian. ψ is the so-called curvature perturbation. The each

components of the perturbed Einstein tensor are given by

δG0
0 = 6H(ψ̇ +HA)− 2

a2
∂2
[
ψ + a2H

(
Ė +

B

a

)]
, (5.7)

δG0
i = −2∂i(ψ̇ +HA), (5.8)

δGi
j = 2[ψ̈ + 3Hψ̇ +HȦ+ (3H2 + 2Ḣ)A]δij

+

(
∂i∂j −

1

3
δij∂

2

)[
1

a2
(ψ −A) + (1 + 3H)

(
Ė +

B

a

)]
. (5.9)

A dot denotes a derivative with respect to the cosmic time.

Moving to the right hand side of the Einstein equation, we set the energy-momentum tensor of fluids. The

4-velocity of fluids is defined by uµ = (1−A, a−1∂i(v +B)). v is the velocity potential. The components of the

energy-momentum tensor are given by

δT 0
0 = −δρ, (5.10)

δT 0
i = ∂i[a(ρ+ p)v] =: ∂iδq, (5.11)

δT i
j = δpδij +

(
∂i∂j −

1

3
δij∂

2

)
δΠ, (5.12)

where δρ, δp are the fluctuations of the energy density and pressure respectively, and δΠ is the anisotropic stress.

These scalar-type metric perturbations depend on a gauge transformation xµ → xµ + ξµ (ξµ = (δt, ∂iδx))below

A → A− δ̇t, (5.13)

B → B − 1

a
δt+ aδ̇x, (5.14)

E → E − δx, (5.15)

ψ → ψ +Hδt. (5.16)

Also, the energy-momentum tensor transforms according to the law of the transformation for tensors. Then, the

fluid fluctuations are changed by

δρ → δρ− ρ̇δt, (5.17)

δp → δp− ṗδt, (5.18)

δq → δq − (ρ+ p)δt, (5.19)

δΠ → δΠ. (5.20)

Let us consider the relationships between these perturbative quantities and observables. The perturbative

quantities depend on a gauge transformation (5.3), but observables are not independent of gauge freedom. First,

we discuss the gauge invariant way. Eliminating the spatial gauge dependence δxi, we consider below quantity,

σ := Ė +
B

a
. (5.21)

Then, σ → σ − δt/a under a gauge transformation. So, rewriting the Einstein equations by this quantity, we

can eliminate the spatial gauge dependence. In the matter sectors, the perturbative variables depend only on a

time-dependent gauge transformation without δΠ. Thus, in order to describe the gauge-invariant equations of

motion in terms of scalar-type variables, we can kill the remaining the time-direction gauge shift δt with σ. For

example, the gauge-independent values are

δG̃0
0 := δG0

0 − a2Ġ0
0σ, (5.22)

δG̃0
i := δG0

i − a2(G0
0 −Gj

j/3)∂iσ, (5.23)

δG̃i
j := δGi

j − a2Ġi
jσ. (5.24)
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As for matter sector, we can obtain the gauge-invariant variables by using T instead of G. These treatment is

the so-called gauge-invariant perturbation theory [123, 124, 125].

For convention, let us consider the gauge-invariant quantities related to A and ψ. It is convenient to use the

below combinations,

Φ := A− (a2σ)·, (5.25)

Ψ := ψ + a2Hσ. (5.26)

These are the so-called Bardeen variables and are broadly used to describe the evolution of density fluctuations.

Going to Fourier space and rewriting the variables by above gauge-inv. variables, the components of Einstein

equations in (0, 0)(0, i) are given by

3H(Ψ̇ +HΦ− a2Ḣσ) +
k2

a2
Ψ = −4πGδρ, (5.27)

Ψ̇ +HΦ− a2Ḣσ = −4πGδq, (5.28)

where k is the length of a comoving wave-vector. In matter sector, we have not defined gauge-inv. values. We

define the gauge-inv. variable δρ(GI) = δρ − 3Hδq. Combining the Eqs. (5.27) and (5.28), we can obtain the

Poisson equation,

−k
2

a2
Ψ = 4πGδρ(GI). (5.29)

In the context of a gauge fixing which we will discuss after , δρ(GI) is equivalent to that at a comoving gauge

which this coordinate is the comoving frame with fluids, v = 0.

The trace and traceless parts of the Einstein equations in (i, j) are

Ψ− Φ = 8πGδΠ, (5.30)

ψ̈ + 2Hψ̇ −HȦ− (3H2 + 2Ḣ)A = 4πG

(
δp+

2

3
∇2δΠ

)
. (5.31)

From (5.30), we can obtain Ψ = Φ without an anisotropic stress δΠ. In the case without δΠ, combining Eq. (5.31)

rewritten by Φ and Ψ and Ψ = Φ, we obtain the evolution equation of the gravitational potential Φ,

Φ̈− 3(1 + c2s)HΦ̇ + [3H2(1 + c2s) + 2Ḣ]Φ +
c2sk

2

a2
Φ = 4πGδpnad, (5.32)

where c2s is the propagation speed of fluids, c2s := (∂p/∂ρ)|s = ṗ/ρ̇. The source term in the right hand side of

above equation, δpnad, means the fluctuation of entropy,

δpnad = δp(GI) − c2sδρ
(GI), (5.33)

δp(GI) := δp− a2ṗσ. (5.34)

Assuming the component of fluid, we can obtain the evolution of the gravitational potential.

The conservation laws of the energy-momentum tensor δ(∇µT
µ
ν ) = 0 are given by

δ̇ρ+ 3H(δρ+ δp)− 3ψ̇(ρ+ p) =
k2

a2
[δq + a2(ρ+ p)σ], (5.35)

δ̇q + 3Hδq + (ρ+ p)A+ δp =
2

3
k2δΠ. (5.36)

The first is the relativistic version of the energy equation, and the second is called the Euler equation. Because we

have Bianchi identity of the Einstein tensor Gij and the Einstein equations, above conservation equations (5.35)
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and (5.36) are not independent. However, it is convenient to calculate the dynamics of fluids, that is, the density

fluctuation.

It is convenient to fix the gauge freedom instead of using gauge-invariant variables. In this section we will use

a Newtonian gauge. In this gauge, we fix B = E = 0 (⇒ σ = 0). This means that A = Φ, ψ = Ψ, δρ(GI) =

δρ− 3Hδq, δp(GI) = δp. These dynamical variables have no gauge freedom.

5.1.2 Evolution of density fluctuations

Our universe is filled with rich structures, stars, galaxies, clusters, and super clusters. However our universe is

close to homogeneous and isotropic universe at 0th order. If our universe is perfectly homogeneous and isotropic

universe at an initial state, these rich structures cannot be born. Fortunately, inflation can generate classical

fluctuations of spacetime from quantum fluctuations. Transferring these fluctuations to density fluctuations

during the evolution of the universe, the rich structures can be realized.

The gravity plays an important role of making structures. The density fluctuations grow due to the gravity

and the evolution of the universe. When the density of matter increases beyond certain threshold value, the

structure such as stars can be born. This is called gravitational instability. Cosmological observations can

observe the statistical property of density fluctuations based on the perturbative calculations. We would like to

study the evolution of density fluctuations in terms of non-relativistic matter deeply inside horizon scales which

we can observe at a linear level. In order to the gravitational evolution of the density, the density fluctuations

need to grow at early times. The higher-order corrections can be negligible. The non-linear property of density

fluctuations will be discussed in Ch. 6.

Deeply inside sub-horizon scale (k ≪ aH), rewriting Eqs. (5.35)(5.36) by Φ, δ := δρ(GI)/ρ̄, δp, v instead of

δρ(GI) and δp(GI) at a Newtonian gauge, we obtain equations for matter,

δ̇ +
v

a
= 0, (5.37)

v̇ +Hv =
k2

a

[
Φ− δp

ρ̄(1 + δ)

]
. (5.38)

δ is the so-called density fluctuation. In the RD era, δp can affect the dynamics of the system. Also, we have the

Poisson equation (5.29),

1

a2
∂2Φ = 4πGρ̄δtot. (5.39)

Note that the cosmological constant does not appear on the Poisson equation. Here, we do not restrict the single

fluid component. The dynamics of gravitational potentials is determined by the total fluid. So, we wrote the

sub-scription tot to emphasize it. In the above system, there are the four unknown variables under the three

equations. So, we need to add the extra information for matter content, equation of state parameter w.

In order to the gravitational evolution of the density, the density fluctuations need to grow at the early time

when these are much smaller than unity. We study the evolution of density fluctuations at linear level where the

higher-order effect can be negligible.

For simplicity, let us consider only non-relativistic matter universe, that is, Einstein de Sitter universe. Then,

we can neglect the entropy fluctuation δpnad (recall δp = c2sρ̄δ + δpnad). Combining Eqs. (5.37) and (5.38) to

eliminate the velocity potential v, we can obtain the evolution equation of the density fluctuation δ,

δ̈ + 2Hδ̇ −
(
4πGρ̄− c2sk

2

a2

)
δ = 0. (5.40)

Thanks to linearity, Fourier modes do not mix with each other. This picture is not used to go to non-linear order.
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We can understand the behavior of the solution in Eq. (5.40) without solving concretely when we regard δ

as the position of a particle. The first term is the acceleration of a particle, the second one is the friction, and

the third one is the potential term which can change its sign. Thus, this equation is equivalent to that of 1

dimensional motion with the friction and the potential V (δ) = −(4πGρ̄ − c2sk
2/a2)δ2/2. Note that in this case

the friction term and potential term are time-dependent.

If the coefficient of the potential 4πGρ̄ − c2sk
2/a2 is negative, the potential is convex downwardly. Then, δ

cannot grow, and dampedly oscilate. This situation happen in the case with the large sound speed. Because

fluids with the large sound speed have large pressure, the gravitational force cannot grow the density of matter

against it. Also, at a small scale, there is no sufficient mass to grow gravitationally. This oscillation due to the

pressure is called the acoustic oscillations.

If the coefficient of the potential 4πGρ̄ − c2sk
2/a2 is positive, the potential is convex upwardly. The density

fluctuation can gravitationally grow even if there exist the friction term and the pressure of fluids. The friction

term is induced by the cosmic expansion, it prevents the grow of the density fluctuation from the gravitational

force.

These two different situations are separated by kJ. It is determined by the condition that the coefficient of the

potential vanishes, that is,

kJ =
a
√
4πGρ̄

cs
. (5.41)

The corresponding wavelength in the real space is

λJ :=
4πa

kJ
= cs

√
π

Gρ̄
. (5.42)

It is called Jeans length. This quantity give the criteria of the structure formation. Therefore, the modes smaller

than it cannot grow against the pressure while the modes larger than it can do. Considering the mass included

in the volume whose sides are Jeans length,

MJ := ρ̄λ3J =
c3s√
G3ρ̄

, (5.43)

it is the threshold of minimum mass which can form the structure. This MJ is called Jeans mass.

The speed of non-relativistic matter (includes dark matter) is sufficiently smaller than the speed of light. In

the MD era, the Jeans length is much smaller than the horizon size lH := c/H ∼ c/(Gρ̄)1/2 (λJ ∼ (cs/c)lH ≪ lH).

Thus, the structure formation occur broadly inside the horizon due to the gravitational instability.

5.1.3 Growth of density fluctuations thanks to gravitational instability

We focus on the modes with wavelengths larger than the Jeans length, and we derive the growing solution. This

growing solution describes the linear growth of density fluctuations for dark matter during the MD era and after

that. This is the important fact on the structure formation.

At a scale much larger than the Jeans scale, k ≪ kJ , the evolution equation for density fluctuation (5.40) is

given by

δ̈ + 2Hδ̇ − 4πGρ̄δ = 0. (5.44)

As you see above, this equation does not depend on the wave-number k. This equation holds in Fourier space.

Thus, the evolution of the density fluctuation is independent of that at other positions.

At first, let us consider the Einstein de Sitter universe which is filled with non-relativistic matter andK = Λ = 0.

The background dynamics is given by Eq. (2.18), H = 2/3t. Then, the background energy density is given by
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ρ̄ = (6πGt2)−1. The above equation reduces to

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0. (5.45)

Assuming the power law form of solutions, δ ∝ tn, we obtain the general solution

δ = At2/3 +Bt−1, (5.46)

where A and B are integration constants. The first term is the growing mode solution which increases in time,

and the second one is the decaying mode solution which decreases in time. The decaying mode is irrelevant in

the structure formation while the growing mode plays an important role of the growth of density fluctuations.

The time-dependence of the growing mode is propotional to t2/3. This dependence is same as that of the scale

factor in the Einstein de Sitter universe. Therefore, the growth of density fluctuation is given by δ ∝ a in the

MD era.

In general situation, for example, after the matter dominace, we can obtain the solution for δ if we give the

expansion law of the universe. To eliminate the first-order derivative we introduce the variable y = aδ. Then,

the equations (5.44) is rewritten by this new variable as

ÿ −
(
ä

a
+ 4πGρ̄

)
y = 0. (5.47)

By the way, the evolution equation for the scale factor (2.9) and the conservation law of matter at the background

level (2.11) have been given by

ä

a
= −4πG

3
ρ̄+

Λ

3
, (5.48)

˙̄ρ = −3Hρ̄. (5.49)

Differentiating the evolution equation in time and using the conservation law, we obtain

...
a −

(
ä

a
+ 4πGρ̄

)
ȧ = 0. (5.50)

Comparing this equation to Eq. (5.47), y = ȧ is the particular solution in this ordinary differential equation. Let

us study the general solution. Assuming the form of the solution, y = ȧw(t), Eq. (5.47) further reduces to

ȧẅ + 2äẇ = 0. (5.51)

We can solve this equation in terms of ẇ imediately. The solution is ẇ ∝ ȧ−2. Integrating once in time

w ∝
∫

dt

ȧ2
=

∫
da

ȧ3
. (5.52)

Summarizing above result, the independent solutions in Eq. (5.44) are

δ ∝

{
H
∫ a

0
da

a3H3 =: D+,

H
(5.53)

We recall the Hubble parameter in general era (5.58) has been given by

H = H0

√
Ωm0

a3
+ΩΛ0 +

1− Ωm0 − ΩΛ0

a2
. (5.54)

This is the monotonous decreasing function in time. Thus, the above solution defined by D+ in Eq. (5.53) is

the growing mode while the below one is the decaying mode. This function D+(t) is the so-called linear growth

factor.
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It is known that the linear growth factor D+ is described by the integral form

D+ =
5

2
aΩm

∫ 1

0

dx

(Ωm/x+ΩΛx2 + 1− Ωm − ΩΛ)3/2
, (5.55)

where we fix the integration constant as D+ → a at the limit a → 0. In the limit a → ∞, the cosmological

constant becomes dominant. Then, H = const. From Eq. (5.53), the linear growth factor is

D+ = const. (5.56)

Thus, the matter density become sparse due to the accelerating expansion, and the density fluctuation cannot

grow. The decaying mode can be negligible after sufficient time. The density fluctuations at the present time are

given by

δ(k, t) = D+(t)δL(k), (5.57)

where δL(k) is the initial distribution of the density fluctuations. *1

Note that above discussion we have derived the evolution of density fluctuations of “dark matter”, so not

baryon. As you know, structures are constructed by baryon. In the theoretic prediction, baryon grows under

gravitational potentials made from dark matter due to gravitational couplings. The density fluctuations of baryon

are sourced by that of dark matter. In the MD, baryon’s density fluctuations becomes same dynamics as that of

dark matter (so-called catch-up) The relation between baryon and dark matter fluctuations is known as biased

relation. At a linear level, baryon’s density fluctuations is related to that of dark matter as shifted with constant

factor, δb = b δ. In fact, we can observe statistical property of δb with red-shift space distortion in cosmological

observations.

5.1.4 Gravitational potential and velocity field

The time evolution of gravitational potentials is determined by the solution of the density fluctuations (5.57) and

the Poisson equation (5.39),

1

a2
∂2Φ = 4πGρ̄δ. (5.58)

In the MD era, ρ̄ ∝ a−3. Then, the time evolution of gravitational potential is given by Φ ∝ D+(t)/a(t)|MD ∼
const. In the dark energy dominance, ρ̄ = const. Then, Φ ∝ a2(t)D+(t)|DED ∼ const.

Going to Fourier space, the solution in the Poisson equation is

Φ(k, t) = −4πGa2ρ̄
δ(k, t)

k2

= −a
2H2

k2
δ(k, t). (5.59)

From the first line to the second one, we used the Friedman equation (2.9).

Let us study the behavior of the velocity field at linear order. In the previous section, we decomposed the

tensor quantities to pure scalar-type, vector-type, and tensor-type variables. The 4-velocity has the vector-type

component. In the fluid equations which will be derived later, we linearize this equation and take the rotation,(
∂

∂t
+H

)
ϵijk∂

jvk = 0 ⇔ ϵijk∂
jvk ∝ a−1 (5.60)

This means that the rotational modes of the velocity (so-called vorticity) decays proportional to a−1 due to the

cosmic expansion.

*1 For convention, the linear growth factor sometimes is normalized by that at the initial time.
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Neglecting this decaying component, there is the single scalar-type variable v which is the divergence component

of the velocity field vi. For convention, we define the velocity-divergence field θ as

θ =
∂iv

i

aH

(
=

v

aH

)
. (5.61)

Using the continuity equation (5.37) and the solution of the density fluctuation (5.57), we can obtain the relation

between δ and θ

θ = −f(t)δ, (5.62)

where

f(t) :=
d lnD+

d ln a
=

Ḋ+

HD+
. (5.63)

This function means the time evolution rate of the growth factor, and is called linear growth rate.

Roughly speaking, f is given by the time derivative of the growth factor. Differentiating Eq. (5.55) in time,

we obtain the below integral

f = −1− Ωm

2
+ ΩΛ +

[∫ 1

0

dx

(Ωm0/x+ΩΛ0x2 + 1− Ωm0 − ΩΛ0)3/2

]−1

. (5.64)

In the Einstein-de Sitter universe, f = 1 identically. The rate f is the criteria of the distinguishment of the theory

of gravity discussed in this thesis. In the era after the matter dominance but sufficient near (i. e, 1− Ωm ≪ 1),

we obtain the approximate expression of f

f ≈ 1− 6

11
(1− Ωm)

≈ Ω6/11
m . (5.65)

This value, 6/11, is the typical value of GR, and is the landmark of the test of gravity on large scale structure.

In general, this power law index is called growth index which we introduced Eq. (5.1). In Sec. 5.4, we estimate

the growth index in DHOST theories.

5.2 DHOST theories: background and perturbation equations

5.2.1 Action

We recall the action of the generic quadratic DHOST theories [21, 22] which is given by

S =

∫
d4x

√
−g

[
G2(ϕ,X)−G3(ϕ,X)□ϕ+G4(ϕ,X)R+

5∑
i=1

ai(ϕ,X)Li

]
,

where we have several functions of the scalar field ϕ and its kinetic term X := (−1/2)ϕµϕ
µ. The Lagrangians Li

are quadratic in the second derivatives of ϕ and are given by

L1 = ϕµνϕ
µν , L2 = (□ϕ)2, L3 = (□ϕ)ϕµϕµνϕν , L4 = ϕµϕµρϕ

ρνϕν , L5 = (ϕµϕµνϕ
ν)2,

where ϕµ := ∇µϕ and ϕνρ := ∇ρ∇νϕ.

In order for this higher-derivative theory to be free of Ostrogradsky ghosts, we must impose the degeneracy

conditions that relate G4 and ai. The quadratic DHOST theories are classified in several subclasses [21, 22],

among which we are interested in the so-called class I theories, because theories in other subclasses exhibit some
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pathologies in a cosmological setup [78, 79]. (The class I DHOST theories are conformally/disformally related to

the Horndeski theory [22, 23].) As shown in Sec. 3.3, the class I degeneracy conditions are summarized as

a1 + a2 = 0, β2 = −6β2
1 , β3 = −2β1 [2(1 + αH) + β1(1 + αT)] , (5.66)

where

M2 = 2(G4 + 2Xa1), M2αT = −4Xa1, M2αH = −4X(G4X + a1),

M2β1 = 2X(G4X − a2 +Xa3), M2β2 = 4X[a1 + a2 − 2X(a3 + a4) + 4X2a5],

M2β3 = −8X(G4X + a1 −Xa4). (5.67)

Here we write the derivative of a function f(X) with respect to X as fX . We thus have 3 constraints among

6 functions (G4 and ai), leaving 3 free functions in addition to G2 and G3. These α-parameters are related to

linear perturbations (we will see in next section).

Note that the propagation speed of GWs is given by c2GW = 1+αT. The gravitational wave event GW170817 [52]

and its optical counterpart GRB 170817A [53] have placed a tight bound c2GW ≃ 1. We therefore have αT ≃ 0,

provided that this constraint is valid at low energies where dark energy/modified gravity models are used [70].

Imposing αT = 0 amounts to taking a1 = a2 = 0, but for the moment we do not require this.

5.2.2 Background equations in shift-symmetric DHOST theories

In the rest of the chapter we focus on the shift-symmetric subclass of DHOST theories, in which the Lagrangian

is invariant under a constant shift of the scalar field, namely ϕ → ϕ+const. This means that the free functions

contained in the Lagrangian are dependent only on the scalar field kinetic term X.

As a matter component we only consider pressureless dust and assume that it is minimally coupled to gravity.

For a homogeneous and isotropic background, ds2 = −dt2 + a2(t)δijdx
idxj , ϕ = ϕ(t), with the matter energy

density ρm, the gravitational field equations read

3M2H2 = ρm + ρϕ, (5.68)

−M2
(
2Ḣ + 3H2

)
= pϕ, (5.69)

where H = ȧ/a (a dot denotes differentiation with respect to t), and

ρϕ := ϕ̇J −G2 −M2H2

(
6β1y −

1

2
β2y

2

)
, (5.70)

pϕ := G2 + 2M2H2

[
(αB + 3β1)y −

(
β1 +

β2
4

)
y2
]
+ 2M2β1

d

dt
(yH) , (5.71)

with J being the shift current defined shortly. Here we defined y := ϕ̈/(Hϕ̇) and

αM :=
1

M2H

dM2

dt
, (5.72)

αB := − ϕ̇XG3X

M2H
+
αH

y
− (3− αM)β1 +

β̇1
H

+

(
β1 +

β2
2

)
y. (5.73)

The scalar field equation can be written using the shift current as

J̇ + 3HJ = 0, (5.74)

where

ϕ̇J = 2XG2X +M2H2

[
3αM

y
− 6αB + 6

(
αMβ1 +

β̇1
H

)
+ 6β1y −

1

2

(
αMβ2 +

β̇2
H

)
y

]

+ 6M2β1Ḣ −M2β2
d

dt
(yH) . (5.75)
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Equation (5.74) implies that in the expanding Universe J = const/a3 → 0 and hence attractor solutions are

characterized by J = 0.

The background equations (5.68), (5.69), and (5.74) contain the higher derivatives
...
ϕ ,

....
ϕ , and Ḧ. However,

the degeneracy conditions (5.66) allow us to reduce the system to the second-order one. It is not so obvious to

demonstrate this explicitly, but one can follow Refs. [84, 126] to see that it is indeed possible to do so.

5.2.3 Density perturbations

Let us study matter density fluctuations in the Newtonian gauge. The perturbed metric in the Newtonian gauge

is given by

ds2 = − [1 + 2Φ(t,x)] dt2 + a2(t) [1− 2Ψ(t,x)] δijdx
idxj . (5.76)

We write the perturbation of the scalar field as

ϕ(t,x) = ϕ(t) + π(t,x). (5.77)

It is convenient to introduce a dimensionless variable Q := Hπ/ϕ̇, and we will use this instead of π. The density

perturbation is defined by

ρm(t,x) = ρm(t)[1 + δ(t,x)]. (5.78)

We study the quasi-static evolution of the perturbations inside the sound horizon scale*2. The quasi-static

approximation indicates that ϵ̇ ∼ Hϵ ≪ ∂iϵ, where ϵ is any of perturbation variables. This does not mean to

drop all the time derivatives and the Hubble parameter, because one may expect that ∇2Φ/a2 ∼ H2δ ∼ Hδ̇ ∼ δ̈

and hence the time derivatives acting on δ cannot be ignored in general. Expanding the action to second order

in perturbations under the quasi-static approximation, we obtain the following effective action:

Seff =

∫
d4xLeff , (5.79)

with

Leff =
M2a

2

{
(c1Φ+ c2Ψ+ c3Q)∂2Q+ 4(1 + αH)Ψ∂

2Φ− 2(1 + αT)Ψ∂
2Ψ

− β3Φ∂
2Φ+

[
4αH

Ψ̇

H
− 2(2β1 + β3)

Φ̇

H
+ (4β1 + β3)

Q̈

H2

]
∂2Q

}
− a3ρmΦδ, (5.80)

where

c1 := −4

[
αB − αH +

β3
2
(1 + αM) +

β̇3
2H

]
, (5.81)

c2 := 4

[
αH(1 + αM) + αM − αT +

α̇H

H

]
, (5.82)

c3 := −2

{(
1 + αM +

Ḣ

H2

)
(αB − αH) +

α̇B − α̇H

H
+

3Ωm

2
+

Ḣ

H2
+ αT − αM

+

[
−2

Ḣ

H2
β1 +

β3
4
(1 + αM) +

β̇3
2H

](
1 + αM − Ḣ

H2

)
− 2

Ḣ

H2

β̇1
H

+

(
Ḣ

H2

)2
β3
2

+
α̇M

H

β3
4

+
β̈3
4H2

}
, (5.83)

and

Ωm :=
ρm

3M2H2
. (5.84)

*2 The validity of the quasi-static approximation has been discussed in Refs. [127, 128, 133]. See also Refs. [130, 131, 132].
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We have three terms whose coefficients are written solely in terms of β1 and β3. (The latter can be expressed in

terms of αH, αT, and β1 using the degeneracy condition given by Eq. (5.66).) These are the new terms in DHOST

theories. The other terms are present in the Horndeski and GLPV theories, but as c1 and c3 are dependent on

β1 and β3 one can see implicitly the contributions of these parameters characterizing DHOST theories.

The field equations are derived by varying the effective action with respect to Φ, Ψ, and Q. Going to Fourier

space, they are given by

(1 + αH)Ψ− β3
2
Φ + b1Q+

2β1 + β3
2

Q̇

H
+

a2

2M2k2
ρmδ = 0, (5.85)

(1 + αT)Ψ− (1 + αH)Φ + b2Q+ αH
Q̇

H
= 0, (5.86)

c2Ψ+ c1Φ+ b3Q+ 4αH
Ψ̇

H
− 2(2β1 + β3)

Φ̇

H
+ b4

Q̇

H
+ 2(4β1 + β3)

Q̈

H2
= 0, (5.87)

where k denotes a comoving wavenumber in Fourier space and Φ, Ψ, and Q are now understood as the Fourier

components. Here, the coefficients bi (i = 1, 2, 3, 4) are defined as

b1 :=
c1
4

+
1

2
(1 + αM)(2β1 + β3) +

1

2

d

dt

(
2β1 + β3

H

)
, (5.88)

b2 := −c2
4

+ (1 + αM)αH +
d

dt

(αH

H

)
, (5.89)

b3 := 2c3 +

[(
1 + αM − Ḣ

H2

)
(1 + αM) +

α̇M

H

]
(4β1 + β3)

+ 2(1 + αM)
d

dt

(
4β1 + β3

H

)
+

d2

dt2

(
2β1 + β3
H2

)
, (5.90)

b4 := 2

[(
1 + αM − Ḣ

H2

)
(4β1 + β3) +

d

dt

(
4β1 + β3

H

)]
. (5.91)

Since matter is assumed to be minimally coupled to gravity, the fluid equations are the same as the standard

ones, and hence under the quasi-static approximation the matter density fluctuations δ(t,x) and the velocity

field ui(t,x) obey

δ̇ +
1

a
∂i[(1 + δ)ui] = 0, (5.92)

u̇i +Hui +
1

a
uj∂ju

i = −1

a
∂iΦ. (5.93)

At linear order, these equations are combined to give

δ̈ + 2Hδ̇ +
k2

a2
Φ = 0, (5.94)

where we moved to Fourier space. The effects of modified gravity come into play through the gravitational

potential Φ which is determined by solving Eqs. (5.85)–(5.87).

Let us then solve Eqs. (5.85)–(5.87) to express Φ, Ψ, and Q in terms of δ and its time derivatives. We will

follow the same procedure as that used in [30]. This procedure is feasible thanks to the degeneracy of the theory.

Solving Eqs. (5.85) and (5.86) for Φ and Ψ and substituting these solutions into Eq. (5.87), one finds that Q̈ and

Q̇ terms are canceled due to the degeneracy, and hence Q can be expressed in the form

− k2

a2H2
Q = κQδ + νQ

δ̇

H
, (5.95)

where the explicit expressions for the time-dependent coefficients κQ and νQ are presented in Appendix A. Finally,

substituting this back into Eqs. (5.85) and (5.86), the gravitational potentials Φ and Ψ can be expressed in terms
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of δ, δ̇, and δ̈ as

− k2

a2H2
Φ = κΦδ + νΦ

δ̇

H
+ µΦ

δ̈

H2
, (5.96)

− k2

a2H2
Ψ = κΨδ + νΨ

δ̇

H
+ µΨ

δ̈

H2
. (5.97)

The explicit expressions for the time-dependent coefficients µi, νi, and κi (i = Φ,Ψ) are also shown in Appendix A.

Within the Horndeski theory we have µi = νi = 0 and in the GLPV theory we still have µΨ = 0. That is, µΨ

first appears in DHOST theories beyond GLPV. Equation (5.96) allows us to eliminate Φ from Eq. (5.94) and

we obtain the closed-form equation for δ as

δ̈ + (2 + ς)Hδ̇ − 3

2
ΩmΞΦH

2δ = 0, (5.98)

where the additional friction ς and the effective gravitational coupling (multiplied by 8πM2) ΞΦ are written in

terms of µΦ , νΦ , and κΦ as

ς =
2µΦ − νΦ
1− µΦ

, (5.99)

ΞΦ =
2

3Ωm

κΦ
1− µΦ

. (5.100)

These two functions characterize modification of gravity. The evolution equation (5.98) has essentially the same

form as that in DHOST theories with c2GW = 1 [84] and in the GLPV theory [107, 133]. Whether or not c2GW = 1

does not play an important role in determining the qualitative form of Eq. (5.98). In the case of the Horndeski

theory (αH = β1 = 0), the additional friction term vanishes, ς = 0, and the result of Ref. [134] is recovered.

Equation (5.98) tells us that, even in DHOST theories under the quasi-static approximation, the evolution of

the matter density fluctuations is independent of the wavenumber, so that as usual (see Eq. (5.57)) we can write

the growing solution to Eq. (5.98) as

δ(t,k) = D+(t)δL(k), (5.101)

where δL(k) represents the initial density field. The effect of the modified evolution of the density perturbations

is thus imprinted in the growth factor, D+(t). Introducing the linear growth rate f := d lnD+

d ln a , the evolution

equation can be written as

df

d ln a
+

(
2 + ς +

d lnH

d ln a

)
f + f2 − 3

2
ΩmΞΦ = 0. (5.102)

Given the expansion history and the dynamics of the scalar field, one can obtain the evolution of the linear growth

rate by solving the above equation.

5.3 Modeling DHOST cosmology in the matter dominated era

We consider possible cosmological constraints on DHOST theories from observables during the matter dominated

era and in the early stage of the dark energy dominated era. To do so, we assume that during these stages y, G2,

αi (i =H, M, B, T), and β1 can be expressed as a series expansion form in terms of ε := 1− Ωm (≪ 1) as

y = y0 +O(ε), (5.103)

G2 = g2M
2H2ε+O

(
ε2
)
, (5.104)

αi = ciε+O
(
ε2
)
, (5.105)

β1 = βε+O
(
ε2
)
, (5.106)
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where y0, g2, ci, and β are constants. Note that the expansion of αi and β1 starts at O(ε), as modifications of

gravity are supposed not to be significant at early times. As seen below, the background equations are consistent

with Eqs. (5.103)–(5.106). The expansion coefficients (y0, g2, ci, β) are not all independent parameters. We will

express some of them in terms of the other coefficients and the parameters of an underlying model.

Substituting Eqs. (5.103)–(5.106) to Eqs. (5.70) and (5.71), one finds, for the attractor solutions (J = 0), that

ρϕ = − (g2 + 6βy0)M
2H2ε+O

(
ε2
)
, (5.107)

pϕ =
[
g2 + 2

(
cB + 3β

)
y0 − 2βy20

]
M2H2ε+ 2M2βy0Ḣε+O

(
ε2
)
. (5.108)

Noting that 3M2H2 − ρ̄m = 3M2H2ε = ρϕ, we have

g2 = −3 (1 + 2βy0) . (5.109)

The effective dark energy equation of state parameter, wϕ := pϕ/ρϕ, can be expanded as

wϕ = w(0) +O(ε). (5.110)

From Eqs. (5.107)–(5.109) and Ḣ/H2 = −3/2 +O(ε) we obtain

w(0) = −1 +
2

3

(
cBy0 −

3

2
βy0 − βy20

)
. (5.111)

Using the above expression for w(0), one has the following useful formulas valid up to O(ε):

Ḣ

H2
= −3

2

(
1 + w(0)ε

)
+O(ε2),

ε̇

H
=
(
cM − 3w(0)

)
ε+O(ε2). (5.112)

To proceed further, let us assume that G2 ∝ Xp, where p is a constant model parameter. This assumption

leads to the relation XG2X = pG2. Using this assumption and Eq. (5.112), we find

0 = ϕ̇J =
[
2pg2 + 3

(
y−1
0 cM − 2cB

)
− 9β + 6β

(
cM − 3w(0)

)
+ 6βy0

]
M2H2ε+O(ε2). (5.113)

Equations (5.111) and (5.113) give

w(0) = −1− y0
3

(cH + 2p) , (5.114)

cB = −p− cH
2

+ β

(
y0 +

3

2

)
. (5.115)

Thus, w(0) and cB are expressed in terms of the model parameter p and the other coefficients.

In the following we consider tracker solutions characterized by the condition

Hϕ̇2q = const , (5.116)

where q is a constant. Such tracker solutions have been studied in the context of the Horndeski theory [71, 72]

and its extensions [84, 117, 126]. For instance, the cosmological solution discussed in [84, 126] corresponds to the

case with p = 2 and q = 1. In this thesis we regard q as another model parameter. For the solutions satisfying

Eq. (5.116), it is easy to see that

y0 =
3

4q
. (5.117)

In what follows we will use q instead of y0

So far we have not imposed c2GW = 1 (⇔ αT = 0), as αT does not appear explicitly in the background equations.

Upon imposing αT = 0, it follows from the definitions that M2 = 2G4 and M2αH = −4XG4X , which implies

another relation between the parameters:

αM = −yαH ⇒ cM = −y0cH. (5.118)

Thus, under the assumption of c2GW = 1, we have four independent parameters, (p, q, cH, β), in terms of which

g2, cM, cB, as well as w
(0), can be expressed.
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5.4 Constraining DHOST cosmology

5.4.1 Growth index

Let us derive the solution to (5.102) in a series expansion form in terms of ε. We start with expanding ς and ΞΦ

in terms of ε. Since αi = O(ε) and β1 = O(ε), we have ς → 0 and ΞΦ → 1 for ε→ 0, so that, to O(ε), ς and ΞΦ

can be written as

ς = ς(1)ε+O(ε2), ΞΦ = 1 + Ξ
(1)
Φ ε+O(ε2), (5.119)

where ς(1) and Ξ
(1)
Φ can be written in terms of the parameters introduced in the previous section. See Appendix A

for their explicit expressions. Then, Eq. (5.102) reduces to

(
cM − 3w(0)

)
ε
df

dε
+

[
1

2
+

(
ς(1) − 3

2
w(0)

)
ε

]
f + f2 − 3

2

[
1−

(
1− Ξ

(1)
Φ

)
ε

]
+O(ε2) = 0, (5.120)

where we used Eq. (5.112). The solution to this equation is given by

f = 1−

[
3
(
1− w(0)

)
+ 2ς(1) − 3Ξ

(1)
Φ

5− 6w(0) + 2cM

]
ε+O(ε2). (5.121)

From the solution (5.121) we immediately obtain

γ =
3(1− w(0)) + 2ς(1) − 3Ξ

(1)
Φ

5− 6w(0) + 2cM
+O(ε). (5.122)

It is easy to see that the standard result γ = 6/11 is recovered for w(0) = −1, cM = ς(1) = Ξ
(1)
Φ = 0. Substituting

the explicit expressions for Ξ
(1)
Φ and ς(1) [Eqs. (A.13) and (A.14)] into Eq. (5.122), one can evaluate an approximate

form of the growth index γ during the matter dominated era and the early stage of the dark energy dominated

era satisfying ε≪ 1:

γ =
3
[(
1− w(0)

)
− cT

]
5− 6w(0) + 2cM

− 2

Σ

[
cB − cM + cT − β

(
cM − 3w(0)

)]2
+
cH + β

Σ

{
6
(
1 + w(0)

)
+
(
cM − cT

)[
1− 2

(
cM − 3w(0)

)]
+
[
cB − β

(
cM − 3w(0)

)][
5− 2

(
cM − 3w(0)

)]
+ 5
(
cH + β

)(
cM − 3w(0)

)}
+O(ε) , (5.123)

where

Σ =
1

3

(
5− 6w(0) + 2cM

){
3
(
1 + w(0)

)
+ 2 (cM − cT) +

[
1− 2

(
cM − 3w(0)

)][
cB − cH − β

(
cM − 3w(0) + 1

)]}
.

(5.124)

The first two terms in Eq. (5.123) are the generalization of the previous results derived in the case of the

Horndeski theory [162] and the third term appears when at least either of cH and β is nonvanishing, namely

when one considers theories beyond Horndeski. Equation (5.123) is general in the sense that we have not yet

imposed αT = 0. Now, imposing αT = 0 (⇒ cT = 0), as discussed around Eq. (5.118), γ can be written in terms

of (p, q, cH, β) as

γ =
3

2(−3 + 6p+ 10q)(3p+ 11q)

{[
(p+ 4q) (−3 + 6p+ 10q)− 8pq2

]
+

1

2

[
(−3 + 6p+ 10q) + 8q (3p+ 2q)

]
cH +

3q(1 + 2q)(−3 + 6p+ 16q)(cH + β)2

2pq + 3qcH + (3p+ 5q)β

}
. (5.125)
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Fig. 5.1 The allowed parameter region in the β-cH plane obtained from the gravitational growth index in

the shift-symmetric quadratic DHOST cosmology after GW170817. The parameters are given by (p, q) =

(1, 1/2) (red), (1, 3) (green), and (3, 1/2) (blue). The first set of the parameters corresponds to the solution

discussed in [84, 126].

5.4.2 Observational constraints

In this section, we investigate constraints on DHOST theories based on current observational limits on the

gravitational growth index γ. For instance, clustering measurements from the BOSS DR12 give the limit as

γ = 0.52±0.10 in Ref. [136] (based on the analysis in Fourier space) and γ = 0.609±0.079 in Ref. [137] (based on

the analysis in configuration space). The constraints from BOSS DR14 are given as γ = 0.55± 0.19 in Ref. [138]

and γ = 0.580 ± 0.082 in Ref. [139] (by adding tomographic analysis). Since the typical value of the deviation

from the central value of γ in the current observations as shown above can be roughly estimated as ≲ O(0.1), let

us employ γ = 6/11± 0.1 as a conservative constraint. For a given set of the model parameters (p, q), this can be

translated into constraints on (β, cH) using Eq. (5.125). The parameter regions in the β-cH plane allowed by the

constraint γ = 6/11 ± 0.1 are plotted in Fig. 5.1 for (p, q) = (1, 1/2) (red), (1, 3/2) (green), and (3, 1/2) (blue).

One finds from Fig. 5.1 that a constant-γ curve for fixed p and q is a hyperbola in the β-cH plane for (p, q) and

γ that we are considering. This means that we have degeneracy between cH and β in the observations of the

growth index. In contrast, in the GLPV theory we have β = 0, and hence we can obtain for instance the following

constraints on cH: −0.4 ≤ cH ≤ 0.4 for (p, q) = (1 , 1/2), −0.4 ≤ cH ≤ 0.5 for (1 , 3/2), and −1.1 ≤ cH ≤ 0.7 for

(3 ,1/2). Deriving the constraints for other values of (p, q) is straightforward. It should be emphasized that the

constraints we have obtained in Fig. 5.1 are those at high redshifts satisfying Ωm ≃ 1.

To compare our results with previously known constraints, it is necessary to make further assumptions that

connect the series expansion of αH and β1 to their present values. Specifically, we assume that αH = cH (1− Ωm),

β1 = β (1− Ωm), and the leading order expression of γ [Eq. (5.125)] are valid all the way up to the present time.

Hereafter we focus on the specific parameter values (p, q) = (1, 1/2), which corresponds to the model discussed

in [84, 126], and demonstrate the allowed parameter region. Though details of constraints will be different for

different choices of (p, q), we expect that the order of the bounds is approximately the same.

Existing constraints on DHOST theories mainly come from the Newtonian stellar structure modified due to

the partial breaking of the Vainshtein mechanism, which is characterized by a single parameter Υ1 := −2(αH +
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Υ1 < 1.6

Υ1 > -2 /3
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Fig. 5.2 The allowed parameter region obtained from the gravitational growth index in the shift-symmetric

quadratic DHOST cosmology after GW170817 is shown by the red area in the β-cH plane. The parameters

are given by p = 1, q = 1/2. For comparison, the existing constraints −2/3 ≤ Υ1 ≤ 1.6 [85, 86] are shown

by the gray area.

β1)
2/(αH + 2β1) (the definition here is for theories with c2GW = 1) [80, 82, 83]. The lower bound on Υ1 has been

obtained from the requirement that gravity is attractive at the stellar center: Υ1 > −2/3 [85]. The upper bound

is given by comparing the minimum mass of stars with the hydrogen burning with the minimum mass of observed

red dwarfs: Υ1 < 1.6 [86].

There are several attempts for improving the above bounds [87, 88, 89], including the one concerning the

speed of sound in the atmosphere of the Earth [90]. Aside from the constraints from the Newtonian stellar

structure, another constraint has been proposed, which comes from precise observations of the Hulse-Taylor

pulsar. This can severely constrain the effective parameters through the coupling of GWs to matter [83, 121]

:−7.5× 10−3 ≤ αH +3β1 ≤ 2.5× 10−3. However, when deriving this result, several assumptions have been made

and the resultant constraint would depend on the details of how the screening mechanism operates in a binary

system. In this thesis, we try to constrain the effective parameters without taking into account these potentially

more stringent bounds, and use the most conservative constraint: −2/3 < Υ1 < 1.6.

We plot in Fig. 5.2 the allowed parameter region in the β-cH plane obtained from the constraints on the growth

index (red) and stellar structure (black). As shown in Fig. 5.2, combining our results and the conservative

constraints discussed above can break the degeneracy between cH and β without using the Halse-Taylor pulsar

bound. The overlap region between these gives the constraints on both parameters: −1.0 ≤ cH ≤ 1.7 and

−4.7 ≤ β ≤ 1.8.

Note that recently it was pointed out in Ref. [92] that the absence of gravitational wave decay into scalar modes

requires αH + 2β1 = 0. As seen from the fact that the denominator of Υ1 vanishes when this is satisfied, this is

a special case which has not been explored so far. It would be interesting to investigate the behavior of gravity

in this limiting case in detail, but it is beyond the scope of this thesis, and we do not consider this constraint.

5.5 Summary

In this chapter, we have considered a possibility to constrain degenerate higher-order scalar-tensor (DHOST)

theories by using the information about the linear growth of matter density fluctuations. In DHOST theories,
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the evolution equation for the linear matter density fluctuations is modified in such a way that the effective

gravitational coupling is changed by the factor ΞΦ and the friction term has an additional contribution ςH, both

of which can be expressed in terms of the effective parameters αi and βi used in the literature.

We have constructed cosmological models in DHOST theories as a series expansion in terms of 1 − Ωm. In

doing so, we have assumed for simplicity that cosmological solutions under consideration are attractors in shift-

symmetric theories and subject to the tracker ansatz. The resultant cosmology is characterized by two model

parameters (p, q) and four independent effective parameters in general (i.e., six parameters in total), and upon

imposing c2GW = 1 the number of independent parameters reduces to four in total. Our construction thus

provides a concise description of DHOST cosmology during the matter dominated era and the early stage of the

dark energy dominated era.

We have then explicitly expressed the gravitational growth index γ in terms of (p, q) and the effective parame-

ters. We have found that the constant-γ curve in the β-cH plane generically is a hyperbola for c2GW = 1 and fixed

(p, q). One can thus obtain constraints on a certain combination of the effective parameters at high redshifts by

using the observations of the growth index alone.

Under the additional assumption that our leading order results in 1 − Ωm expansion can be extrapolated all

the way to the present time, we have compared the constraints from the growth index with the previously known

bounds. Combining our results and the constraints from modifications of the gravitational law inside stellar

objects, we have shown that the parameter degeneracy between αH/(1− Ωm) and β1/(1− Ωm) could be broken

without using the Hulse-Taylor pulsar constraint, though our results slightly depend on the model parameters.

Future-planned observations for large-scale structure would exclude the currently allowed region of the parameter

space and serve as tests of the viability of DHOST theories.
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Chapter 6

Matter bispectrum beyond Horndeski theories

In this chapter, we study the matter bispectrum of large scale structure as a probe of these modified gravity

theories, focusing in particular on the effect of the terms that newly appear in the so-called “beyond Horndeski”

theories. This topic is based on S. Hirano, T. Kobayashi, H. Tashiro and S. Yokoyama, “Matter bispectrum

beyond Horndeski theories,” Phys. Rev. D 97 (2018) no.10, 103517 [arXiv:1801.07885 [astro-ph.CO]] [30].

Since the Horndeski theory [18, 19, 20] shares the same structure of nonlinear derivative interaction as the

Galileon theory [50], the Vainshtein screening mechanism can naturally be implemented [64, 65, 66]. It is expected

that this derivative nonlinearity is imprinted in the one-loop dark-matter power spectrum and the bispectrum.

This point has been investigated within the Horndeski theory in Refs. [141, 142, 143]. Higher derivative operators

arise in DHOST theories beyond Horndeski, and one of the interesting effects due to them is the partial breaking

of Vainshtein screening inside matter [80]. These new interactions will also participate in the one-loop matter

power spectrum and the bispectrum, which could be a probe of modified gravity theories beyond Horndeski. See

Refs.[83, 85, 86, 87, 88, 109, 110, 111, 112, 113] for other probes of DHOST theories.

The purpose of this chapter is to investigate the impact of the new operators of the Gleyzes-Langlois-Piazza-

Vernizzi (GLPV) theory [106, 107] on the matter bispectrum. As the GLPV theory (without the so-called F5

term) is the simplest extension of the Horndeski theory in the context of degenerate theories, this work is a first

step to study how new nonlinear interactions beyond Horndeski affect non-Gaussianity of large scale structure.

This chapter is organized as follows. In the next section, we derive our basic equations for the matter density

perturbations δ in the GLPV theory. We then give a second-order solution for δ in Sec. 6.2. In Sec. IV, the

matter bispectrum in the GLPV theory is evaluated and its particular feature is emphasized. In Sec. V, we give

a short comment on the implication of the recent GWs constraints for the theory. We draw our conclusions in

Sec. VI.

6.1 Basic Equations

6.1.1 The GLPV theory

The action of the GLPV theory is given by [106, 107]

S =

∫
d4x

√
−g (L+ Lm) , (6.1)
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where*1

L = G2(ϕ,X) −G3(ϕ,X)□ϕ
+G4(ϕ,X)R+G4X

[
(□ϕ)2 − ϕ2µν

]
+G5(ϕ,X)Gµνϕ

µν − 1

6
G5X [(□ϕ)3 − 3(□ϕ)ϕ2µν + 2ϕ3µν ]

− 1

2
F4(ϕ,X)ϵµνρσϵµ′ν′ρ′σϕ

µ′
ϕµϕ

ν′

νϕ
ρ′

ρ

− 1

3
F5(ϕ,X)ϵµνρσϵµ′ν′ρ′σ′ϕµ

′
ϕµϕ

ν′

νϕ
ρ′

ρϕ
σ′

σ, (6.2)

and Lm is the Lagrangian of the matter components. Here we use the notation ϕµ := ∇µϕ, ϕµν := ∇µ∇νϕ,

GX := ∂G/∂X, and ϵµνρσ is the totally antisymmetric Levi-Civita tensor. The above Lagrangian has six arbitrary

functions, Gi (i = 2, 3, 4, 5) and Fj (j = 4, 5), of ϕ and X := (−1/2)ϕµϕ
µ. The GLPV theory is an extension of

the Horndeski theory, and Eq. (6.2) reduces to the Horndeski Lagrangian in the case of F4 = F5 = 0.

Among wide classes of theories described by the GLPV action, we focus on those with G5 = F5 = 0 in the

present thesis. This is a reasonable restriction because the G5 term not only hinders the recovery of the Newtonian

behavior of the gravitational potentials on small scales in a cosmological background [64], but also causes some

instabilities inside the Vainshtein radius [66]. Since the F5 term has the structure similar to the G5 term, the

same pathologies are expected, though this has not been confirmed explicitly so far. In the absence of G5 and F5,

the GLPV theory is degenerate without further conditions [22], so that there are at most 3 propagating degrees

of freedom in any background spacetime. This nature is desirable in view of Ostrogradsky instabilities.

One of the interesting consequences of the F4 term is the partial breaking of the Vainshtein screening mechanism

inside matter sources [80, 83, 85, 86, 87, 88, 109, 110, 111, 112, 113], where derivative nonlinearities are significant.

It turns out that the partial breaking of the Vainshtein mechanism generically occurs in degenerate higher-order

scalar-tensor theories [81, 82, 83, 84]. In the present thesis, we study the impact of the nonlinearities of the F4

term on the matter bispectrum. Some studies in this direction have already been undertaken in the context of

the Horndeski theory in Refs. [141, 142, 143], and this work is an extension of [141].

6.1.2 Effective action under the quasi-static approximation

We consider cosmological perturbations in a homogeneous and isotropic cosmological background. The field

equations governing the background evolution are found in Ref. [80]. As we are not interested in the evolution

of the universe in a particular modified gravity model, here we simply assume that the field equations admit a

solution that is very close to the usual ΛCDM model. This is in principle possible because we have the four free

functions in the theory that can be tuned if necessary.

The perturbed metric in the Newtonian gauge is given by

ds2 = −(1 + 2Φ)dt2 + a2(t)(1− 2Ψ)dx2, (6.3)

and the perturbed scalar field is written as

ϕ(t,x) = ϕ̄(t) + π(t,x), (6.4)

where a barred variable denotes the background quantity. It is convenient to introduce the dimensionless scalar

field perturbation as Q(t,x) := Hπ/ ˙̄ϕ. We only consider nonrelativistic matter and write its energy density as

ρm(t,x) = ρ̄m(t)[1 + δ(t,x)], (6.5)

*1 Concerning the factors in front of F4 and F5, we follow the convention of Ref. [80] which is different from the one used in

Ref. [106, 107].
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where δ is a density contrast.

We expand the action (6.1) in terms of the perturbations. Since we are interested in the evolution of the density

perturbations inside the (sound) horizon, we employ the quasi-static approximation, ∇iϵ ≫ ϵ̇ ∼ Hϵ, where ∇i

is the spatial derivative, a dot stands for the time derivative, and ϵ is any of Φ, Ψ, or π. As we have shown

in Sec. 5.4, this does not mean to drop all the time derivatives and the Hubble parameter and hence the time

derivatives acting on δ cannot be ignored in general. In the case of the GLPV theory, we will also have terms

like ∇2Ψ̇ in the perturbation equations, which must be retained as well.

The crucial point in the perturbative expansion is that, in the Horndeski and GLPV theories, the second

derivatives of perturbations can be large on small scales even though the first and zeroth derivatives are small, so

that the terms nonlinear in the second derivatives cannot be neglected. This is the very reason why the Vainshtein

screening mechanism (partially) works. This is also the key nonlinearity for the matter bispectrum.

Noting that the matter Lagrangian can be written as Lm = −Φρ̄mδ, we have the following effective action

governing the perturbation evolution in the quasi-static regime [80]:

Seff =

∫
dtd3x a3

[
L(2) + L(NL)

]
, (6.6)

where

L(2) = −M2(1 + αT )Ψ
∇2Ψ

a2
+ 2M2(1 + αH)Ψ

∇2Φ

a2

−M2

[
Ḣ

H2
+

3Ωm

2
+

(
1 + αM +

Ḣ

H2

)
(αB − αH)

+
α̇B − α̇H

H
+ (αT − αM )

]
Q
∇2Q

a2

− 2M2(αB − αH)Φ
∇2Q

a2

+ 2M2

[
αH(1 + αM ) + αM − αT +

α̇H

H

]
Ψ
∇2Q

a2

− ρ̄mΦδ + 2M2αH
Ψ̇

H

∇2Q

a2
, (6.7)

and

L(NL) =
M2

2H2

[
αG − 3(αH − αT ) + 4αB − αM (2 + αG + αH)− α̇G + α̇H

H

]
L3

a4

+
M2

2H2
(αG − αH)Φ

Q(2)

a4
+
M2

2H2
αTΨ

Q(2)

a4
− 2M2

H2
αH

∇iΨ∇jQ∇i∇jQ

a4

+
M2

2H4
(αG − αH + αT )

L4

a6
, (6.8)

with

L3 = −1

2
(∇Q)2∇2Q, (6.9)

L4 = −1

2
(∇Q)2Q(2), (6.10)

Q(2) = (∇2Q)2 − (∇i∇jQ)2. (6.11)
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The time-dependent parameters in the coefficients are defined by

M2 = 2(G4 − 2XG4X − 2X2F4), (6.12)

αM = H−1 d lnM
2

dt
, (6.13)

HM2αB = −ϕ̇(XG3X −G4ϕ − 2XG4ϕX)− 4HX

× (G4X + 2XG4XX + 4XF4 + 2X2F4X), (6.14)

M2αT = 4X(G4X +XF4), (6.15)

M2αH = 4X2F4, (6.16)

and

Ωm :=
ρ̄m

3M2H2
, (6.17)

which were introduced and used in Refs. [107, 144, 145, 146]. (we follow the convention of Ref. [107].) We have

defined another useful parameter as

M2αG = 4X(G4X + 2XG4XX + 4XF4 + 2X2F4X), (6.18)

which first appears in the cubic order action.

The physical meanings of those parameters are as follows: M is the effective Planck mass, αM is its evolution

rate, αB is the braiding parameter that characterizes the kinetic mixing of the scalar field and the metric, and

αT parameterizes the deviation of the speed of GWs from that of light. The αH parameter signals novel effects

compared to the Horndeski theory. The last term in Eq. (6.7) and the last term in the second line in Eq. (6.8),

which generate third-order derivatives in the equations of motion, are proportional solely to this parameter and

hence appear for the first time in the GLPV theory. Note that Ωm cannot always be interpreted as the familiar

density parameter, because the Friedmann equation is modified and we do not necessarily have the equation of

the form 3M2H2 = ρ̄m + the energy density of the scalar field. This is related to the fact that the distinction

between the geometry (the “left hand side” of the gravitational field equations) and the energy-momentum tensor

is ambiguous in the presence of nonminimal coupling.

If all the α parameters vanish and M = MPl (the Planck mass), the nonlinear part of the Lagrangian, L(NL),

vanishes and the quadratic Lagrangian L(2) reduces to the standard expression in GR. In view of this, we assume

that

αM , αB , αT , αH , αG ≪ 1, (6.19)

in the early stage of the matter-dominant universe, so that standard cosmology is recovered. In the late-time

universe, however, the effect of modification of gravity emerges, which is assumed to be responsible for the

accelerated expansion. In this stage we assume O(1) modification from GR, i.e.,

αM , αB , αT , αH , αG = O(1). (6.20)

This is equivalent to assuming that

ϕ̇ ∼MPlH0, G2 ∼M2
PlH

2
0 , G3X ∼M−1

Pl H
−2
0 ,

G4 ∼M2
Pl, F4 ∼M−2

Pl H
−4
0 , · · · (6.21)

in the late-time universe, where the Hubble parameter is roughly given by its present value, H0.
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6.1.3 Field equations in Fourier space

Now we move to the field equations that can be derived by varying the effective action (6.6) with respect to Ψ,Φ,

and Q. They are given, in Fourier space,*3 by

− p2

[
FTΨ(t,p)− GTΦ(t,p)−A3Q(t,p) +M2αH

Q̇(t,p)

H

]
=

B1

2a2H2
Γ[t,p;Q,Q]

+
M2αH

a2H2

1

(2π)3

∫
d3k1d

3k2 δ
(3)(k1 + k2 − p)k21k

2
2 β(k1,k2)Q(t,k1)Q(t,k2), (6.22)

− p2 [GTΨ(t,p) +A2Q(t,p)]− a2

2
ρ̄mδ(t,p) = − B2

2a2H2
Γ[t,p;Q,Q], (6.23)

− p2

[
A0Q(t,p)−A1Ψ(t,p)−A2Φ(t,p)−M2αH

Ψ̇(t,p)

H

]
= − B0

a2H2
Γ[t,p;Q,Q] +

B1

a2H2
Γ[t,p;Q,Ψ]

+
B2

a2H2
Γ[t,p;Q,Φ]

− M2αH

a2H2

1

(2π)3

∫
d3k1d

3k2 δ
(3)(k1 + k2 − p)k21k

2
2α(k1,k2)Q(t,k1)Ψ(t,k2)

+
C0

a4H4

1

(2π)6

∫
d3k1d

3k2d
3k3 δ

(3)(k1 + k2 + k3 − p)

× [−k21k22k23 + 3k21(k2 · k3)
2 − 2(k1 · k2)(k2 · k3)(k3 · k1)]Q(t,k1)Q(t,k2)Q(t,k3),

(6.24)

where for Y, Z = Ψ,Φ, Q we defined

Γ[t,p;Y, Z] =
1

(2π)3

∫
d3k1d

3k2δ
(3)(k1 + k2 − p)k21k

2
2γ(k1 · k2)Y (t,k1)Z(t,k2), (6.25)

and we introduced

α(k1,k2) = 1 +
(k1 · k2)

k22
, (6.26)

β(k1,k2) =
(k1 · k2)|k1 + k2|2

2k21k
2
2

, (6.27)

γ(k1,k2) = 1− (k1 · k2)
2

k21k
2
2

. (6.28)

The coefficients FT ,GT , A1, A2, · · · all have the dimension of (mass)2 and are written in terms of M2 and the

α parameters as presented explicitly in Appendix B. One finds that there are four terms proportional to αH in

Eqs. (6.22)–(6.24) (the fourth term in the left hand side of Eq. (6.22), the second term in the right hand side

of Eq. (6.22), the fourth term in the left hand side of Eq. (6.24), and the fourth term in the right hand side of

Eq. (6.24)). Those are the new terms beyond Horndeski. The other coefficients contain αH , but they are not

new in the sense that even in the case of αH = 0 those coefficients do not vanish and just reduce to the known

expressions in the Horndeski theory [141].

6.1.4 Fluid equations

Since it is assumed that matter is minimally coupled to gravity, the fluid equations are the same as the usual ones.

Under the quasi-static approximation, the conservation and Euler equations for nonrelativistic matter expressed

*3 Our convention for the Fourier transform is

f(t,x) =
1

(2π)3

∫
d3p f(t,p)eip·x.
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in terms of the density contrast δ and the velocity field ui are given by

δ̇ +
1

a
∇i[(1 + δ)ui] = 0, (6.29)

u̇i +Hui +
1

a
uj∇ju

i = −1

a
∇iΦ. (6.30)

Modification of gravity comes into play in the evolution of matter density perturbations through the gravitational

potential Φ in Eq. (6.30), which is determined by Eqs. (6.22), (6.23), and (6.24). Going to Fourier space,

Eqs. (6.29) and (6.30) are written as

δ̇(t,p)

H
+ θ(t,p) = − 1

(2π)3

∫
d3k1d

3k2 δ
(3)(k1 + k2 − p)α(k1,k2)θ(t,k1)δ(t,k2), (6.31)

θ̇(t,p)

H
+

(
2 +

Ḣ

H2

)
θ(t,p)− p2

a2H2
Φ(t,p)

= − 1

(2π)3

∫
d3k1d

3k2 δ
(3)(k1 + k2 − p)β(k1,k2)θ(t,k1)θ(t,k2), (6.32)

where we introduced a scalar function defined as θ = ∇iu
i/aH.

6.2 Matter density perturbations in GLPV theory

Based on the set of the equations obtained in the previous section, here, we derive the bispectrum of the matter

density perturbations, δ, and highlight the impact of the new operators in the GLPV theory as the simplest

extension of the Horndeski theory . In order to investigate the matter bispectrum at the tree level, we need

to consider the perturbations up to second order under the assumption that the perturbations initially obey

Gaussian statistics. Before deriving the matter bispectrum from the second-order perturbations, let us begin

with giving a linear evolution equation for the matter density perturbations.

6.2.1 Linear perturbations

Since we are considering the minimally-coupled matter there is not any modification in the continuity and Euler

equations even in modified theories of gravity such as the GLPV theory. Thus, the linear evolution equation for

the matter density perturbations in Fourier space is given by the standard one as Eq. (5.94). The modification

of gravity is encoded in Φ that is determined from the modified Poisson equation.

As we have shown in Sec. 5.4, we truncate Eqs. (6.22), (6.23), and (6.24) at the linear order and solve them

for Φ, Ψ, and Q, we obtain the modified Poisson equation. Even under the quasi-static approximation, those

equations contain Ψ̇ and Q̇. Thanks to the degeneracy of the system, it can be straightforward to express Φ (and

the other two variables) in terms of δ and its derivatives. The final result one thus arrives at is:

− p2

a2H2
Q = κQδ + νQ

δ̇

H
, (6.33)

− p2

a2H2
Ψ = κΨδ + νΨ

δ̇

H
, (6.34)

− p2

a2H2
Φ = κΦδ + νΦ

δ̇

H
+ µΦ

δ̈

H2
, (6.35)

The explicit forms of the coefficients are given in Appendix B. The difference from that in the result of DHOST

theories is the absence of µΨ (see Eq. (5.97)). Equation (6.35) allows us to eliminate Φ from Eq. (5.94), leaving

a closed-form, second-order evolution equation for δ is given by the same equation, Eq. (5.98). Therefore, we can

also obtain the same growing solution to the equation as Eq. (5.101).
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Using Eq. (5.94), one can eliminate δ̈ from Eq. (6.35). Then, replacing δ̇ with fHδ, we can rewrite Eqs. (6.33)–

(6.35) as

− p2

a2H2
Q = (κQ + fνQ) δ =: KQ δ, (6.36)

− p2

a2H2
Ψ = (κΨ + fνΨ) δ =: KΨ δ, (6.37)

− p2

a2H2
Φ =

(
3

2
ΩmΞΦ − ςf

)
δ =: KΦ δ, (6.38)

where we recall that the definitions of ΞΦ, ς, and f are given in Eqs. (5.99), (5.100), and (5.63) respectively.

These equations are convenient for the second-order analysis in the next subsection.

6.2.2 Second-order perturbations

To investigate the bispectrum of δ at the tree level, we need to solve the perturbation equations up to second

order. Let us now move to the second-order analysis of the matter density perturbations based on the equations

derived in the previous section. Substituting the first-order solutions (6.36)–(6.38) to the right hand sides of

Eqs. (6.22)–(6.24), we obtain, up to second order in δ,

FTΨ− GTΦ−A3Q+M2αH
Q̇

H
= −D2

+

a2H2

p2

(
M2αHK

2
Q Wβ(p) +

B1

2
K2

Q Wγ(p)

)
, (6.39)

GTΨ+A2Q+
a2

2p2
ρmδ = D2

+

a2H2

p2
B2

2
K2

Q Wγ(p), (6.40)

A0Q−A1Ψ−A2Φ−M2αH
Ψ̇

H
= D2

+

a2H2

p2
[
M2αHKQKΨ Wα(p) +

(
B0K

2
Q −B1KΨKQ −B2KΦKQ

)
Wγ(p)

]
,

(6.41)

where Wα(p) := I[p;αs(k1,k2)], Wβ(p) := I[p;β(k1,k2)], and Wγ(p) := I[p; γ(k1,k2)], with

I[p;Y (k1,k2)] :=
1

(2π)3

∫
d3k1d

3k2 δ
(3)(k1 + k2 − p)Y (k1,k2)δL(k1)δL(k2). (6.42)

Here we introduced a symmetrized version of α(k1,k2) as

αs(k1,k2) = 1 +
(k1 · k2)(k

2
1 + k22)

2k21k
2
2

. (6.43)

Note that we have the following relation: Wβ(p) = Wα(p) − Wγ(p). The functions Wα,Wβ , and Wγ are

dependent on the initial density field δL(k), but not on modification of gravity.

From the nonlinear fluid equations (6.31) and (6.32) with the analysis of the linear perturbations in 6.2.1, we

can obtain the following equation up to the second order in δL:

δ̈ + 2Hδ̇ +
p2

a2
Φ = H2D2

+

(
S̃αWα − S̃γWγ

)
, (6.44)

where

S̃α = 2f2 +
3

2
ΩmΞΦ − ς f, (6.45)

S̃γ = f2. (6.46)

The second-order nonlinearity due to the modification of gravity, which appears in the right hand sides of

Eqs. (6.39)–(6.41), is introduced through the gravitational potential Φ as follows. Repeating the same procedure
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as in the linear analysis, we can write Q, Φ, and Ψ in terms of δ, its first and second derivatives, and the

second-order terms in the right hand sides of Eqs. (6.39)–(6.41) as

− p2

a2H2
Q = κQδ + νQ

δ̇

H
+D2

+ (τQαWα − τQγWγ) , (6.47)

− p2

a2H2
Ψ = κΨδ + νΨ

δ̇

H
+D2

+ (τΨαWα − τΨγWγ) , (6.48)

− p2

a2H2
Φ = κΦδ + νΦ

δ̇

H
+ µΦ

δ̈

H2
+D2

+ (τΦαWα − τΦγWγ) , (6.49)

where

τQα = −M
2αH

Z
(
A2GTK

2
Q + G2

TKQKΨ

)
, (6.50)

τQγ =
1

Z

{[
B0G2

T +
B1

2
A2GT +

B2

2

(
T + 3M2αHGT

(
1 +

2

3

Ḣ

H2

))
−M2αHA2GT

]
K2

Q

−B1G2
TKΨKQ −B2G2

TKΦKQ +
M2αHGT

2

(D2
+B2K

2
Q)
·

D2
+H

}
, (6.51)

τΨα =
M2αH

Z
(
A2

2K
2
Q +A2GTKQKΨ

)
, (6.52)

τΨγ =
B2K

2
Q − 2A2τQγ

2GT

= − 1

Z

{[
B0A2GT +

B1

2
A2

2 +
B2

2

(
−S + 3M2αHA2

(
1 +

2

3

Ḣ

H2

))
−M2αHA

2
2

]
K2

Q

−B1A2GTKΨKQ −B2A2GTKΦKQ +
M2αHA2

2

(D2
+B2K

2
Q)
·

D2
+H

}
, (6.53)

τΦα =
1

GT

{
FT τΨα −

[
A3 − 2M2αH

(
1 + f +

Ḣ

H2

)]
τQα +M2αH

τ̇Qα

H
−M2αHK

2
Q

}
, (6.54)

τΦγ =
1

GT

{
FT τΨγ −

[
A3 − 2M2αH

(
1 + f +

Ḣ

H2

)]
τQγ +M2αH

τ̇Qγ

H
−
(
B1

2
−M2αH

)
K2

Q

}
. (6.55)

We then eliminate Φ from Eq. (6.44) and obtain the evolution equation for δ capturing the effect of the second-

order nonlinearity of the scalar field:

δ̈ + (2 + ς)Hδ̇ − 3

2
ΩmΞΦH

2δ = D2
+H

2 (SαWα − SγWγ) . (6.56)

In the right hand side we defined Sα and Sγ by

(1− µΦ)Sα(t) := S̃α + τΦα, (6.57)

(1− µΦ)Sγ(t) := S̃γ + τΦγ , (6.58)

The second-order nonlinearity due to modification of gravity appears in all of these τ coefficients, but it should

be emphasized that τΦα = 0 for αH = 0 (i.e., in the Horndeski theory ), while τΦγ ̸= 0 in general if gravity is

modified anyway (see Table 6.1). In other words, τΦα is a new term beyond Horndeski. The solution to Eq. (6.56)

up to second order in δL can be written as

δ(t,p) = D+(t)δL(p) +D2
+(t)

1

(2π)3

∫
d3k1d

3k2 δ
(3)(k1 + k2 − p)F2(t,k1,k2)δL(k1)δL(k2), (6.59)

with the second-order kernel defined as

F2(t,k1,k2) := κ(t)αs(k1,k2)−
2

7
λ(t)γ(k1,k2), (6.60)
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where κ(t) and λ(t) are the solutions of the following second-order differential equations,

κ̈+ [4f + (2 + ς)]Hκ̇+H2

(
2f2 +

3

2
ΩmΞΦ

)
κ = H2Sα, (6.61)

λ̈+ [4f + (2 + ς)]Hλ̇+H2

(
2f2 +

3

2
ΩmΞΦ

)
λ =

7

2
H2Sγ , (6.62)

supplemented with the condition that κ, λ→ 1 in the early time (it is easy to check that κ = λ = 1 indeed solves

Eqs. (6.61) and (6.62) if all the α parameters are negligibly small and Ωm = 1). In the Horndeski limit (αH = 0),

these expressions reproduce the result of Ref. [141]. Especially, since ς = 0 and τΦα = 0 in the Horndeski theory

(see Table 6.1), the right hand side of Eq. (6.61) reduces to H2
(
2f2 + 3ΩmΞΦ/2

)
, so that κ(t) = 1 at any time.

In this case the second-order kernel (6.60) therefore depends only on λ(t) [141]. Thus, we find that a new feature

in the GLPV theory beyond Horndeski is the κ term that is different from 1 and is time-dependent in general.

This is the main result of this chapter.

ΛCDM Horndeski beyond

ς 0 0 ✓
ΞΦ 1 ✓ ✓
µΦ 0 0 ✓
τΦα 0 0 ✓
τΦγ 0 ✓ ✓

Table 6.1 Summary of the parameters in the second-order evolution equation for δ, (6.56) with Eqs. (6.57) and (6.58).

6.3 Matter bispectrum

Fig. 6.1 (color online) The reduced bispectrum as a function of θ12, with fixed k1 and k2. We adopt the

isosceles triangular configuration with k1 = k2 = 0.01h/Mpc in the left panel (a), and the distorted triangle

with k1 = 5k2 = 0.05h/Mpc in the right panel (b). In both panels, we take a different value for κ(t) to be

1.0 (gray solid line), 0.9 (blue dashed line), and 1.1 (orange dashed line), while λ(t) is fixed to be 1.

Finally, let us investigate the matter bispectrum as an observable for probing such quasi-nonlinear evolution

based on the above analysis for the matter density perturbations up to second order. The power spectrum and
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Fig. 6.2 (color online) The reduced bispectrum as a function of θ12, with fixed k1 and k2. We adopt the

isosceles triangular configuration with k1 = k2 = 0.01h/Mpc in the left panel (a), and the distorted triangle

with k1 = 5k2 = 0.05h/Mpc in the right panel (b). In both panels, we take a different value for λ(t) to be

1.0 (gray solid line), 0.9 (blue dashed line), and 1.1 (orange dashed line), while κ(t) is fixed to be 1.

the bispectrum of the matter density perturbations are respectively defined by

⟨δ(t,k1)δ(t,k2)⟩ =: (2π)3δ(3)(k1 + k2)P (t, k1), (6.63)

⟨δ(t,k1)δ(t,k2)δ(t,k3)⟩ =: (2π)3δ(3)(k1 + k2 + k3)

×B(t, k1, k2, k3). (6.64)

Here, for simplicity we assume that the initial density field δL obeys Gaussian statistics, and, by making use of

the expression (6.59), the matter bispectrum at the tree-level can be evaluated as

D−4
+ (t)B(t, k1, k2, k3)

= 2[F2(t,k1,k2)P11(k1)P11(k2) + 2 cyclic terms], (6.65)

where P11 represents the power spectrum of the initial density field defined by

⟨δL(k1)δL(k2)⟩ =: (2π)3δ(3)(k1 + k2)P11(k1). (6.66)

As we have mentioned before, we assume that standard cosmology is recovered in the early stage of the matter-

dominant universe. Thus, here, we calculate P11(k) adopting the best fit cosmological parameters taken from

Planck data [147].

As usual, in order to investigate the shape of the bispectrum in Fourier space, let us introduce a reduced

bispectrum which is defined by

Q123(t, k1, k2, k3) :=
B(t, k1, k2, k3)

D4
+(t)[P11(k1)P11(k2) + 2 cyclic terms]

. (6.67)

From Eq. (6.65), we have

Q123(t, k1, k2, k3) =
2[F2(t,k1,k2)P11(k1)P11(k2) + 2 cyclic terms]

[P11(k1)P11(k2) + 2 cyclic terms]
. (6.68)

Thus, the reduced bispectrum does not depend on the linear growth function D+ and the effect of modification

of gravity is encoded in the second-order kernel, F2(t,k1,k2). As we have discussed, the characteristic feature of

the GLPV theory beyond Horndeski with αH ̸= 0 is that κ in the second-order kernel is different from 1 and is

time-dependent in general.
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To demonstrate how this new feature beyond Horndeski distorts the shape of the bispectrum, we plot in

Figs. 6.1(a) and 6.1(b) the reduced bispectrum as a function of θ12 which is the angle between k1 and k2, with k1

and k2 fixed. In these figures, we take different values of κ as κ = 1.0 (gray solid line), 0.9 (blue dashed line), and

1.1 (orange dashed line) while we fix λ = 1.0. As one can see, except for the squeezed configurations (θ12 → π in

Fig. 6.1(a)), the reduced bispectrum becomes larger for κ > 1 and smaller for κ < 1.

As a comparison, we show in Figs. 6.2(a) and 6.2(b) the reduced bispectrum for different values of λ. In these

figures, κ is fixed to be 1 which corresponds to the case with αH = 0. Compared with Figs. 6.1(a) and 6.1(b), one

finds that the deviation of λ from unity would give a large effect on the reduced bispectrum only for θ12 ≃ 2π/3

in the left panel and θ12 ≃ π/2 in the right panel. Thus, the effect of the GLPV theory on the matter bispectrum

is significant for θ12 → 0. In other words, the matter bispectrum with θ12 = 0 is considered to be a powerful

probe of the GLPV theory beyond Horndeski.

6.4 GWs constatints

The gravitational wave event GW170817 [52] and its optical counterpart GRB 170817A [53] placed a tight

constraint on the propagation speed of GWs, |cGW − 1| < O(10−15). The consequences of this constraint on the

Galileon theory, the Horndeski theory, and its extensions have been discussed in Refs. [73, 81, 82, 83, 84, 98, 99,

100, 101, 102, 148, 149, 150, 151, 152, 153, 154].*2 In terms of the functions in the action, the constraint reads

|αT | < O(10−15) ⇒ G4X +XF4 ≃ 0. (6.69)

This must hold at least in the late-time universe. Upon imposing αT = 0, we have αH = αG, while αM , αB , and

αH itself are still allowed to be O(0.1)−O(1) [99]. A further constraint can be obtained from the Hulse-Taylor

pulsar under the additional assumption that the scalar radiation does not take part in the energy loss, which

leads to |αH | < O(10−3) [83]. This implies that O(10−3)–O(1) deviation of κ from its Horndeski value (κ = 1) is

still possible, depending on the assumption one makes. This fact also is true in DHOST theories [164]. As shown

in Sec. 3.5, generic quadratic DHOST theories have the catastrophic decay channel of GWs into dark energy

field. In GLPV theories, the decay rate in this channel is proportional to αH [164]. Thus, GLPV theories needs

to be generalized to DHOST theories in order to evade this catastrophic decay.

6.5 Discussion and Summary

In this chapter, we have studied the matter bispectrum of large scale structure as a probe of the so-called

“beyond Horndeski” theory or the GLPV theory of modified gravity. We focused on the nonlinearity generated

from derivative interactions of the metric perturbations and the scalar degree of freedom and derived a second-

order solution of the matter density perturbations δ(t,k). We have shown that a new, time-dependent coefficient

κ appears in the second-order kernel in the GLPV theory. Since we have κ := 1 in GR and even in the Horndeski

theory [141], this is certainly a characteristic feature of the theory beyond Horndeski. Based on this second-

order solution, we have evaluated the matter bispectrum and found that the effect of nonstandard values of κ

can be seen in the bispectrum at the folded configurations (k1 + k2 = k3). We thus conclude that a deformed

matter bispectrum at the folded configurations can be a unique probe of “beyond Horndeski” operators. Note

that there exist several scenarios where the primordial curvature perturbations would acquire the folded-type

non-Gaussianity during inflation (see, e.g., Ref. [157]) and such a type of primordial non-Gaussianity could also

deform the matter bispectrum at the folded configurations. However, if we can precisely measure not only the

*2 See Refs. [95, 96, 97, 121, 155, 156] for earlier works before this event on the prospects of measuring cT
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dependence of θ12 but also the scale dependence of the matter bispectrum, it would help us discriminate the

signature of beyond Horndeski from such a folded-type primordial non-Gaussianity.

It is not sufficient to detect the shape dependence of matter bispectrum in current observations (for example,

see [158]). In Refs. [159, 160, 161], combining matter power spectrum and bispectrum, these authors have

discussed the improvements of cosmological parameter fitting in galaxy surveys. In Ref. [162], they estimate the

constraint for the growth index γ and λ within Horndeski theories from the future galaxy surveys, SKA and

Euclid surveys. Using the same analysis, we might estimate the constraint for λ and κ for DHOST theories

from future galaxy surveys. Alternatively, the possibility to detect the signals of λ and κ is discussed from CMB

lensing [163].

In light of the recent GWs constraints, there is a growing interest in the so-called DHOST theories which

are more general than the one considered in this chapter but evade the stringent constraints. In Ref. [164], the

authors study matter bispectrum in DHOST theories. That feature is the same as that in GLPV theories. We

have caught the typical feature of matter bispectrum beyond Horndeski theories.
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Chapter 7

Conclusions

In this thesis, we have studied the properties of Degenerate Higher-Order Scalar-Tensor (DHOST) theories on

small and large scales toward its tests as alternatives to dark energy.

In Ch. 2, we overviewed the late-time acceleration based on General Relativity (GR). We introduced modified

gravity as an interesting one of the possibilities to explain the late-time acceleration which is consistent with our

universe.

In Ch. 3, we overviewed DHOST theories and introduced its viable classes evading gravitational wave con-

straints.

In Ch. 4, we have studied the screening mechanism in a particular subclass of DHOST theories in which the

speed of Gravitational Waves (GWs) is equal to the speed of light and gravitons do not decay into scalar fluc-

tuations. By inspecting a spherically symmetric gravitational field, we have found that the screening mechanism

operates in a very different way from that in generic DHOST theories [80, 81, 82, 83]. First, the fine-tuning is re-

quired so that solar-system tests are evaded in the vacuum exterior region. This is in contrast to generic DHOST

theories, in which the implementation of the Vainshtein screening mechanism outside the matter distribution is

rather automatic. Second, the way of the Vainshtein breaking inside extended objects is also different from that

in generic DHOST theories. We have shown that in the interior region the metric potentials obey the standard

inverse power law, but the two do not coincide. Moreover, the effective gravitational constant differs from its

exterior value. However, the current most stringent bound comes from the fact that the effective gravitational

coupling for GWs is different from the Newtonian constant [83, 121], rather than from the above interesting

phenomenology. We conclude that the allowed parameter space is small for DHOST theories as alternatives to

dark energy evading gravitational wave constraints.

In Ch. 5, we have considered a possibility to constrain DHOST theories by using the information about the

linear growth of matter density fluctuations. In DHOST theories, the evolution equation for the linear matter

density fluctuations is modified in such a way that the effective gravitational coupling is changed and the friction

term has an additional contribution. We have constructed cosmological models in DHOST theories as a series

expansion in terms of 1 − Ωm. In doing so, we have assumed for simplicity that cosmological solutions under

consideration are attractors in shift-symmetric theories and subject to the tracker ansatz. Our construction

provides a concise description of DHOST cosmology during the matter-dominated era and the early stage of

the dark energy dominated era. We have then explicitly expressed the gravitational growth index γ in terms of

the effective parameters in DHOST theories. One can thus obtain constraints on a certain combination of the

effective parameters at high redshifts by using the observations of the growth index alone. Under the additional

assumption that our leading-order results in 1−Ωm expansion can be extrapolated all the way to the present time,

we have compared the constraints from the growth index with the previously known bounds. Combining our

results and the constraints from modifications of the gravitational law inside stellar objects, we have shown that

the parameter degeneracy between αH/(1−Ωm) and β1/(1−Ωm) could be broken without using the Hulse-Taylor
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pulsar constraint, though our results slightly depend on the model parameters. Future-planned observations for

large scale structure would exclude the currently allowed region of the parameter space and serve as tests of the

viability of DHOST theories.

In Ch. 6, we have studied the matter bispectrum of large scale structure as a probe of the GLPV theory of

modified gravity. The GLPV theory is the simplest extension of the Horndeski theory in DHOST theories. We

focused on the nonlinearity generated from derivative interactions of the metric perturbations and the scalar

degree of freedom and derived a second-order solution of the matter density perturbations. We have shown that

a new time-dependent coefficient κ appears in the second-order kernel in the GLPV theory. Since we have κ := 1

in GR and even in the Horndeski theory [141], this is certainly a characteristic feature of the theory beyond

Horndeski. Based on this second-order solution, we have evaluated the matter bispectrum and found that the

effect of nonstandard values of κ can be seen in the bispectrum at the folded configurations. We thus conclude

that a deformed matter bispectrum at the folded configurations can be a unique probe of “beyond Horndeski”

operators. In light of the recent GWs constraints, there is a growing interest in DHOST theories which are more

general than the one considered in this chapter but evade the stringent constraints. In Ref. [164], the authors

study matter bispectrum in DHOST theories. That feature is the same as that in GLPV theories. We have

caught the typical feature of matter bispectrum beyond Horndeski theories.

As future directions, we had better investigate the one-loop matter power spectrum in DHOST theories.

Because the scale dependence in the amplitude of matter bispectrum appears, we expect that the higher-order

corrections to the power spectrum are larger than that of Horndeski theories of GR. In future observations of

large scale structure, the detectability of higher-order correlation functions will be improved. In this sense, the

analysis of the one-loop power spectrum in DHOST theories would be motivated.

In this thesis, we focus only on the density fluctuations deeply inside the horizon. Future surveys, such as

the SKA project, could detect the correlations near the cosmological horizon. At the horizon scale, (general)

relativistic corrections appear, for example, the time derivative of gravitational potentials. Then, the galaxy

number count can be affected. In scalar-tensor theories, one assumes that quasi-static approximation is valid

on the evolution of the scalar field, and the time derivatives of the scalar field are negligible deeply inside the

horizon. At the horizon scale, the time derivatives of the scalar field cannot be negligible, so the effect of the scalar

field could appear on observables such as the galaxy number count. We would like to formulate the (general)

relativistic effect of the scalar field in Horndeski theories or DHOST theories based on Ref. [165]. Also, we would

analyze the scale dependence of bias parameters between dark matter and baryon fluctuations due to non-linear

scalar self-interactions based on Ref. [166].
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Appendix A

Explicit expressions for some coefficients in

Chapter 5

Let us write down explicitly the coefficients in Eqs. (5.95)–(5.97). The coefficients in Eq. (5.95) are given by

νQ =
3Ωm

2Z
NΦ , (A.1)

κQ =
3Ωm

8Z

{[
c1 + 2

(
2β1 + β3

)]
FΦ +

(
c2 − 4αH

)
FΨ

− M2

H

[
2
(
2β1 + β3

) d
dt

(
FΦ

M2

)
− 4αH

d

dt

(
FΨ

M2

)]}
, (A.2)

where we have defined the some dimensionless parameters as

SNΦ = αH

(
1 + αH

)
− 1

2

(
1 + αT

)(
2β1 + β3

)
, (A.3)

SFΦ = 1 + αT , SFΨ = 1 + αH , (A.4)

S =
(
1 + αH

)2 − 1

2

(
1 + αT

)
β3 , (A.5)

The denominator Z can be written as

Z =
1

4

{
EΦc1 + EΨc2 −

[
b3 +

2(2β1 + β3)

H
ĖΦ − 4αH

H
ĖΨ
]}

(A.6)

where c1, c2, and b3 were defined in Eqs (5.81), (5.82), and (5.90). We have also defined

SEΦ = b1
(
1 + αT

)
− b2

(
1 + αH

)
, (A.7)

SEΨ = b1
(
1 + αH

)
− 1

2
b2β3 . (A.8)

The coefficients in Eqs. (5.96) and (5.97) are

µa = NaνQ , (A.9)

νa = −EaνQ +Na

[
κQ +

1

a2H2

d

dt

(
a2HνQ

)]
, (A.10)

κa =
3

2
ΩmFa − EaκQ +

Na

a2H3

d

dt

(
a2H2κQ

)
, (A.11)

for a = Ψ ,Φ, where

SNΨ = −
(
1 + αH

)
β1 −

1

2
β3 . (A.12)
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The coefficients in Eq. (5.119) are given by

ς(1) =
3

Z
(cH + β)

2 (
cM − 3w(0)

)
, (A.13)

Ξ
(1)
Φ = cT +

2

Z

[
cB − cM + cT − β

(
cM − 3w(0)

)]2
− cH + β

Z

{
6
(
1 + w(0)

)
+
(
cM − cT

)[
1− 2

(
cM − 3w(0)

)]
+
[
cB − β

(
cM − 3w(0)

)][
5− 2

(
cM − 3w(0)

)]
+ 3
(
cH + β

)(
cM − 3w(0)

)}
, (A.14)

where

Z = 3
(
1 + w(0)

)
+ 2cM +

[
1− 2

(
cM − 3w(0)

)][
cB − cH − β

(
cM − 3w(0) + 1

)]
. (A.15)

We can then finally obtain the explicit expression γ in the main text by sustituting Eqs. (A.13) and (A.14) into

Eq. (5.122).
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Appendix B

The coefficients of Eqs. (6.22)–(6.24) and

Eqs. (6.33)–(6.35) in Chapter 6

The coefficients of Eqs. (6.22)–(6.24) are given in terms of the α parameters by

FT =M2(1 + αT ), GT =M2(1 + αH),

A0 =M2

[
Ḣ

H2
+

3Ωm

2
+

(
1 + αM +

Ḣ

H2

)
(αB − αH) +

α̇B − α̇H

H
+ (αT − αM )

]
,

A1 =M2

[
αH(1 + αM ) + αM − αT +

α̇H

H

]
,

A2 = −M2(αB − αH),

A3 =M2

(
αM − αT +

Ḣ

H2
αH

)
,

B0 = −M
2

4

[
αG − 3(αH − αT ) + 4αB − αM (2 + αG + αH)− α̇G + α̇H

H

]
,

B1 =
M2

2
αT , B2 =

M2

2
(αG − αH),

C0 =
M2

4
(αG − αH + αT ). (B.1)

The coefficients of Eqs. (6.33)–(6.35) are given by

νQ =
3

2
M2Ωm

M2αHGT

Z
, (B.2)

κQ =
3

2
M2Ωm

T
Z
, (B.3)

νΨ = −3

2
M2Ωm

M2αHA2

Z
, (B.4)

κΨ =
3

2
M2Ωm

S
Z
, (B.5)

µΦ =
M2αH

GT
νQ, (B.6)

νΦ =
1

GT

{
FT νΨ −A3νQ

+M2αH

[
κQ +

1

a2H2

(
a2HνQ

)·]}
, (B.7)

κΦ =
1

GT

{
FTκΨ −A3κQ +

M2αH

a2H3

(
a2H2κQ

)·}
. (B.8)
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with

T := A2 FT +A1 GT −M2αH

(
GT +

ĠT

H

)
, (B.9)

S := A0 GT +A2A3 +M2αH

(
A2 +

Ȧ2

H

)
, (B.10)

Z := A0 G2
T +A2(A1 +A3)GT +A2

2 FT +
M2αH

H
G2
T

(
A2

GT

)·
. (B.11)
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[100] J. M. Ezquiaga and M. Zumalacàrregui, “Dark Energy After GW170817: Dead Ends and the Road Ahead,”

Phys. Rev. Lett. 119, no. 25, 251304 (2017) [arXiv:1710.05901 [astro-ph.CO]].

[101] T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller and I. Sawicki, “Strong constraints on cosmological

gravity from GW170817 and GRB 170817A,” Phys. Rev. Lett. 119, no. 25, 251301 (2017) [arXiv:1710.06394

[astro-ph.CO]].

[102] N. Bartolo, P. Karmakar, S. Matarrese and M. Scomparin, “Cosmic structures and gravitational waves in

ghost-free scalar-tensor theories of gravity,” arXiv:1712.04002 [gr-qc].

[103] J. M. Ezquiaga and M. Zumalacarregui, “Dark Energy in light of Multi-Messenger Gravitational-Wave

astronomy,” Front. Astron. Space Sci. 5 (2018) 44 [arXiv:1807.09241 [astro-ph.CO]].

[104] R. Kase and S. Tsujikawa, “Dark energy in Horndeski theories after GW170817: A review,” Int. J. Mod.

Phys. D 28 (2019) no.05, 1942005 [arXiv:1809.08735 [gr-qc]].
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